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Abstract. Many real objects are often given as discrete sets of points such as corners or other4
salient features. For our main applications in chemistry, points represent atomic centers in a molecule5
or a solid material. We study the problem of classifying discrete (finite and periodic) sets of unordered6
points under isometry, which is any transformation preserving distances in a metric space.7

Experimental noise motivates the new practical requirement to make such invariants Lipschitz8
continuous so that perturbing every point in its ε-neighborhood changes the invariant up to a constant9
multiple of ε in a suitable distance satisfying all metric axioms. Because given points are unordered,10
the key challenge is to compute all invariants and metrics in a near-linear time of the input size.11

We define the Pointwise Distance Distribution (PDD) for any discrete set and prove in addition12
to the properties above the completeness of PDD for all periodic sets in general position. The PDD13
can compare nearly 1.5 million crystals from the world’s four largest databases within hours on a14
modest desktop computer. The impact is upholding data integrity in crystallography because the15
PDD will not allow anyone to claim a ‘new’ material as a noisy disguise of a known crystal.16
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1. Introduction: motivations, problem statement, and contributions.19

This paper is a substantial extension of the 10-page conference version at NeurIPS20

2022 [63]. The original paper introduced the Pointwise Distance Distribution (PDD)21

as an isometry invariant of a periodic set of points in any Euclidean space Rn, and22

claimed the key properties (Lipschitz continuity, near-linear time computability, and23

generic completeness) without proofs. This extended version defines PDD for any24

discrete set in a metric space and rigorously proves the properties above in finite and25

periodic cases. We also adapt the invariants to a more convenient form, speed up26

the original implementation almost by an order of magnitude, and report much larger27

experiments on the world’s largest experimental databases of periodic materials.28

The continuous and generically complete invariants are motivated by the pre-29

viously unresolved ambiguity of digital representations of molecules and crystals in30

terms of atomic coordinates or lattice bases. Fig. 1 (middle) shows that the same31

periodic set can be obtained by periodically repeating different motifs of points.32

Fig. 1. Left: a lattice can be defined by many primitive bases. Middle: a periodic set can be
defined by different pairs (basis, motif). Right: a hierarchy of discrete sets, which model periodic
crystals and amorphous solids with points at atomic centers, see Definitions 1.1, 1.2, 1.5, 3.3.
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2 D. WIDDOWSON, V. KURLIN

The crucial question “same or different?” was explicitly raised for crystals [54]33

and makes sense for many other real objects. For a cloud of unordered points in34

computer vision or chemistry applications, a list of atomic coordinates depends on35

a given coordinate system and an order of atoms. The independence of coordinate36

representations is important for identifying rigid structures and rigid conformations37

of flexible molecules such as proteins whose properties depend on a rigid shape.38

Noisy measurements imply that any real objects are at least slightly different.39

Hence the next practical question is “how much different?” If noise is ignored up40

to any positive threshold, noisy perturbations of atomic centers can be continued41

sufficiently long to make any given sets identical. This sorites paradox [33] can be42

resolved by quantifying even tiny differences through a continuous distance metric.43

Definition 1.1 (a discrete set S in a metric space X with a metric dX). A44

metric space is any set X of objects (called points) with a distance metric d : X×X →45

R satisfying the metric axioms: (1) coincidence dX(a, b) = 0 if and only if a = b,46

(2) symmetry dX(a, b) = dX(b, a), and (3) triangle inequality dX(a, b) + dX(b, a) ≥47

dX(a, c) for any points a, b, c ∈ X. A set S ⊂ X is called discrete if there is a constant48

ε > 0 such that all points of S are ε-separated, so dX(a, b) ≥ ε for any a, b ∈ S.49

An example of a discrete set S is a finite set in Rn with the Euclidean metric50

denoted by |p⃗− q⃗| for any points p, q ∈ Rn. Here p⃗ denotes the vector from the origin51

0 ∈ Rn to p. The positivity dX(a, b) ≥ 0 follows from other axioms: 2dX(a, b) =52

dX(a, b) + dX(b, a) ≥ dX(a, a) = 0. Without the first axiom, d is called a pseudo-53

metric and can be the zero function: dX(a, b) = 0 for all a, b. If the triangle inequality54

is allowed to fail with any additive error ε > 0, the results of clustering such as k-means55

and DBSCAN can be predetermined and hence may not be trustworthy [51].56

Definition 1.2 (lattice, unit cell, motif, l-periodic set). Vectors v⃗1, . . . , v⃗n ∈ Rn57

form a basis if any vector in Rn can be written as v⃗ =
n∑

i=1

tiv⃗i for unique t1, . . . , tn ∈ R.58

For any 1 ≤ l ≤ n, the first l vectors define the lattice Λ = {
l∑

i=1

civ⃗i | c1, . . . , cl ∈ Z}59

and the unit cell U = {
n∑

i=1

tiv⃗i | t1, . . . , tl ∈ [0, 1), tl+1, . . . , tn ∈ R} ⊂ Rn. If l = n,60

then U is an n-dimensional parallelepiped. If l < n, then U is an infinite slab over an61

l-dimensional parallelepiped on v⃗1, . . . , v⃗l. For any finite set of points (called a motif)62

M ⊂ U , the sum S = M + Λ = {p⃗+ v⃗ | p ∈ M, v ∈ Λ} is an l-periodic point set.63

Any unit cell U includes only a partial boundary: we exclude the points with any64

coefficient ti = 1, i = 1, . . . , l, for convenience. Then Rn for l = n is tiled by the65

shifted cells {U + v⃗ | v⃗ ∈ Λ} without overlaps. Any lattice is an example of a periodic66

set with one point in a motif. Any periodic point set S = M +Λ can be considered a67

finite union
⋃

p∈M (p⃗+Λ) of lattices whose origins are shifted to all p ∈ M = S ∩U .68

If we double a unit cell in one direction, e.g. by taking the basis 2v⃗1, v⃗2, . . . , v⃗n,69

the doubled motif M ∪ (M + v⃗1) with the sublattice on the new basis defines the70

original periodic point set S = M +Λ. A basis and its cell U of S are called primitive71

if S ∩U has the smallest size among all unit cells U of S. Fig. 1 (left) shows a square72

lattice in R2, which (as any lattice) can be generated by infinitely many primitive73

bases. Even if we fix a basis, Fig. 1 (middle) shows that different motifs in the same74

primitive cell U define equivalent periodic sets, which differ only by translation.75

Finite and periodic point sets represent molecules and periodic crystals at the76

atomic scale by considering zero-sized points at all atomic centers. Chemical bonds77
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can be modelled by straight-line edges between atomic centers. However, even the78

strongest covalent bonds within a molecule depend on various thresholds for distances79

and angles. So these bonds are not real sticks and only abstractly represent inter-80

atomic interactions, while atomic nuclei are real objects. We model all materials at81

the fundamental level of atoms, which will suffice for all real materials. Because any82

object can be defined in many different ways, Definition 1.3 formalizes an equivalence.83

Definition 1.3 (equivalence relation). An equivalence is a binary relation (de-84

noted by ∼) on any kind of objects satisfying the following axioms: (1) reflexivity: any85

objects S is equivalent to itself, so S ∼ S; (2) symmetry: if S ∼ Q, then Q ∼ S; (3)86

transitivity: if S ∼ Q and Q ∼ T , then S ∼ T . Any object S defines its equivalence87

class [S] = {Q | Q ∼ S} as the full collection of all objects Q equivalent to S.88

The transitivity axiom justifies that all equivalence classes are disjoint: if [S] and89

[T ] share a common object Q, then [S] = [T ]. Any well-defined classification should90

be based on an equivalence, whose practical examples are considered below.91

Definition 1.4 (isometry, rigid motion in Rn). In a metric space X, an isom-92

etry is any map f : X → X that preserves inter-point distances, i.e. d(f(p), f(q)) =93

d(p, q) for all p, q ∈ X. In Rn, any isometry decomposes into translations, rotations,94

and reflections, which generate the Euclidean group E(n). If reflections are excluded,95

orientation-preserving isometries are also called rigid motions and form group SE(n).96

Rigid motion (denoted by ∼=) is the strongest equivalence for many objects in97

practice because translations and rotations of a molecule or solid material keep all98

their properties at least under the same ambient conditions such as temperature and99

pressure. The isometry (denoted by ≃) is only slightly weaker by allowing reflec-100

tions. Taking compositions with a uniform scaling in Rn or including (say) affine101

transformations gives weaker equivalences that define smaller spaces of classes.102

This paper focuses on isometry as a more general equivalence defined in any103

metric space. Our main problem will be to continuously parametrize equivalence104

classes of (various kinds of) discrete sets under isometry. Delone sets were introduced105

by B. Delone [19] as (r,R)-systems in Rn and make sense in any metric space X. Let106

B̄(p; r) = {q ∈ X | d(p, q) ≤ r} be the closed ball with a center p ∈ X and a radius r.107

Definition 1.5 (Delone sets andm-regular sets). In a metric space X, a Delone108

set S is any subset of X satisfying the following conditions:109

(a) packing: there is a radius r > 0 such that the closed balls B̄(p; r) for all points110

p ∈ S are disjoint or, equivalently, all distances between points of S are at least 2r;111

(b) covering: there is a radius R > 0 such that B̄(p;R) for all p ∈ S cover X, i.e.112 ⋃
p∈S

B̄(p;R) = X, or, equivalently, B̄(p;R) for any p ∈ X has at least one point of S.113

114

A Delone set is called m-regular if S splits into m classes under the global isometry115

equivalence: p ∼ q if there is an isometry f : X → X such that f(S) = S, f(p) = q.116

The packing condition implies that S is a discrete set in X by specifying a min-117

imum inter-point distance ε = 2r and is well-motivated by the fact that real atoms118

strongly repel each other at very short distances [25]. The covering condition says119

that X has no unbounded ‘empty’ balls without any points of S and is also motivated120

by the absence of infinite round pores in solid materials, liquids, and dense gases.121

All m-regular sets for m > 1 are also called multi-regular, while 1-regular sets122

are often called regular. Any lattice Λ ⊂ Rn is regular because the required isometry123
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4 D. WIDDOWSON, V. KURLIN

f : Λ → Λ mapping a point p ∈ Λ to another q ∈ Λ is the translation by the vector124

q⃗−p⃗. Similarly, any periodic point set S ism-regular, wherem is upper bounded by the125

size of a motif M of S. A honeycomb periodic set in R2 modeling graphene is regular,126

but not a lattice because there are two points in a primitive unit cell. The regularity127

means that S looks the same when viewed from any point of S. Fig. 1 (middle) shows128

a 2-regular set whose points split into red and blue classes under the global isometry129

equivalence. [20, Theorem 1.3] proved that any multi-regular Delone set is periodic.130

A finite set in Rn is not a Delone set but any finite subset of a finite metric space131

is Delone. The latter special case is indicated by cyan and magenta regions slightly132

touching each other in Fig. 1 (middle). All other inclusions are strict, not to scale.133

The key tool in classifying under an equivalence is an invariant that is a function134

I taking the same value on all equivalent objects. For a finite set S ⊂ Rn, the number135

m of points is an isometry invariant, but the geometric average
1

m

∑
p∈S

p is not, so the136

center of mass cannot reliably distinguish rigid shapes of molecules.137

We state the mapping problem for any discrete sets under isometry, though the138

same conditions make sense for many other objects, e.g. graphs and polygonal meshes,139

and equivalences, e.g. rigid motions, affine or projective transformations in Rn.140

Problem 1.6 (mapping problem for spaces of discrete sets under isometry).141

For a metric space X with a metric dX , find a map I : {discrete sets of unordered142

points in X} → a metric space with a metric d satisfying the following conditions.143

(a) Completeness: any sets S ≃ Q are isometric if and only if I(S) = I(Q).144

(b) Realizability: the image {I(S) | S ⊂ X} is parametrized so that taking any value145

of I from this image allows us to reconstruct S ⊂ X uniquely up to isometry of X.146

(c) Lipschitz continuity: there is a constant λ such that if Q is obtained by per-147

turbing each point of S up to any ε in the metric dX , then d(I(S), I(Q)) ≤ λε.148

(d) Computability: the invariant I, the metric d, and the reconstruction of S ⊂ X149

from I(S) can be computed in a time that depends polynomially on the input sizes.150

For any finite set S ⊂ X, its input size is the number m of points. For any151

periodic point set S ⊂ Rn, its input size is the number m of points in a motif M from152

Definition 1.2 because a Crystallographic Information File (CIF) specifying a basis153

and atomic coordinates in this basis has a linear length O(m) in the motif size m.154

Some infinite Delone sets can described in a finite form, e.g. some aperiodic crystals155

[58] can be obtained as projections of periodic crystals in higher dimensions.156

We leave these general cases for future work and will focus on finite and periodic157

point sets, which already cover many applications where Problem 1.6 was open.158

Fig. 2. Left: the symmetry group and a reduced cell discontinuously change under tiny noise.
Middle: the space of 3 points under isometry is parametrized by inter-point distances 0 < a ≤
b ≤ c ≤ a + b. Right: energy landscapes of crystals show optimized structures as isolated peaks of
height= −energy. To see beyond the ‘fog’, we need a map parametrized by invariants in Problem 1.6.

The completeness in (1.6a) implies that the invariant I is a descriptor with no159
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false negatives and no false positives for all discrete sets, and hence can be considered160

a DNA-style code that uniquely identifies any isometry class. The realizability in161

(1.6b) is even stronger and enables us to sample the space of realizable invariants and162

reconstruct the resulting set S, while a real DNA code is insufficient to grow a living163

organism. The Lipschitz continuity in (1.6c) is motivated by ever-present thermal164

vibrations and experimental noise. Fig. 2 (left) shows that almost any perturbation165

of points can arbitrarily scale up a primitive cell. This inherent discontinuity of166

traditional cell-based representations remained a practical loophole in crystallography167

at least since 1965 [43] and allowed disguising known materials by a slight perturbation168

changing the space group and even the primitive cell volume, and also by replacing169

some chemical elements to avoid detection by chemical composition [3, section 6].170

Fig. 2 (middle) shows a solution of Problem 1.6 for m = 3 points saying that171

any triangle is determined under isometry by 3 ordered inter-point distances. Real or172

simulated crystals are local optima (mountain peaks) in Fig. 2 (right) on a continuous173

space of (isometry classes of) periodic point sets, whose ‘geography’ was unknown.174

Contributions. We introduce the Pointwise Distance Distribution for any discrete175

set in a metric space. This generality is of broad interest to experts in computational176

geometry and applications to physical objects from molecules to solid or even liq-177

uid materials. The previously unpublished aspects are the asymptotic for l-periodic178

sets, rigorous proofs of the Lipschitz continuity (also for adjusted and normalized in-179

variants), near-linear time computability, and generic completeness in the finite and180

periodic case. The linear-time algorithms and the hierarchical nature of PDD com-181

putations have become extremely important for big databases, especially in the last182

years when millions of artificial structures were claimed ‘new’ without checking for183

duplication with known crystals. The decisive advance is closing this discontinuity184

loophole in crystallography, which is demonstrated for the world’s largest databases.185

2. Review of rigorous approaches to mapping spaces of discrete sets.186

This section reviews progress in solving Problem 1.6 for finite and periodic point sets187

by proof-based methods than by experimental studies, which are reviewed in [63, 66].188

Finite sets have two subcases: ordered points (easy) and unordered (much harder).189

Ordered finite sets. Kendall’s shape theory [37] studies ordered points p1, . . . , pm ∈190

Rn whose complete isometry invariant is the distance matrix [57, 38] or the Gram191

matrix of scalar products p⃗i · p⃗j [62, chapter 2.9], [61]. A brute-force extension to m192

unordered points requires m! matrices due to m! permutations ruled out by (1.6d).193

Unordered finite sets (point clouds). Extending the case of m = 3 points in194

Fig. 2 (middle), Boutin and Kemper proved in 2004 that the unordered distribution195

of distances between m points uniquely determines a generic m-point cloud C ⊂ Rn196

under isometry [7]. The genericity condition allows almost all clouds apart from a197

measure 0 subspace among all clouds. For any cloud C of m unordered points in a198

metric space X, writing all distances in increasing order gives the Sorted Distance199

Vector SDV(C) of m(m−1)
2 values computable in time O(m2 logm). The space of200

4-point clouds in R2 has dimension 5 because 6 inter-point distances satisfy one poly-201

nomial equation saying that the tetrahedron on these points has volume 0. Fig. 3202

shows a 4-parameter family of pairs of non-isometric clouds with the same SDV.203

Problem 1.6 expands the question ‘Can we hear the shape of a drum?’ [35]204

which has the negative answer in terms of 2D polygons that are indistinguishable by205

spectral invariants [28, 29, 52, 17, 47]. Problem 1.6 looks for stronger invariants that206

can completely ‘sense’ as in (1.6b), not only ‘hear’, the rigid shape of any cloud.207
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6 D. WIDDOWSON, V. KURLIN

Fig. 3. Non-isometric clouds of 4 points with the same 6 pairwise distances. Left: the trapezoid
T has points (±2, 1), (±4,−1). The kite K has (5, 0), (−3, 0), (−1,±2). Right: the infinite family
of non-isometric clouds C+ ̸≃ C− sharing p1, p2, p3 and depending on parameters a, b, c, d > 0.

Computational geometry studied earlier versions of Problem 1.6 by developing208

canonical representations of point clouds [2, 8, 4], which can be considered complete209

invariants, and also metrics between isometry classes of clouds. For example, any210

metric between fixed clouds extends to their isometry classes [32, 14, 13] by mini-211

mization over infinitely many transformations from the group E(n). This extension212

of the Hausdorff distance [31] for m-point clouds in R2 has time O(m5 logm), see213

[27]. The Gromov-Wasserstein metrics [48, 49] are defined for any metric-measure214

spaces also by minimizing over infinitely many correspondences between points, but215

cannot be approximated with a factor less than 3 in polynomial time unless P=NP,216

see Corollary 3.8 in [56] and polynomial algorithms for partial cases in [1, 44, 46].217

Computing a metric between isometry classes of clouds is only a part of Problem 1.6.218

Indeed, to efficiently navigate on Earth, in addition to distances between cities, we219

need a satellite-type view of the full planet and hence a realizable continuous invariant220

I, which can be considered an analog of coordinates of latitude and longitude.221

Geometric Data Science has gradually developed and solved simpler versions of222

Problem 1.6 since 2020 when the continuity condition was first stated for lattices [50].223

The case of 2D lattices was finished in [41] with a slightly weaker Hölder continuity224

(because the Lipschitz continuity is impossible under perturbations of a lattice basis)225

for a stronger relation under rigid motion in R2, see continuous chiral distances and226

geographic-style maps in [10, 9]. The case of 3D lattices is being finalized in [39].227

For general periodic point sets, the latest advance announced in [63] without228

proofs is the Pointwise Distance Distribution (PDD), which solves Problem 1.6 for229

finite and periodic point sets in general position. This PDD previously appeared as a230

local distribution of distances in the finite case [48] without studying the conditions of231

Problem 1.6. For finite clouds in Rn, the complete invariants under rigid motion with232

Lipschitz continuous metrics were developed in [66, 40]. The high polynomial-time233

complexity of these latest invariants motivates using the much faster PDD in practice.234

3. The Pointwise Distance Distribution and other isometry invariants.235

This section introduces the Pointwise Distance Distribution (PDD) for any discrete236

set S with a finite subset M in a metric space X. If S is finite, we always set M = S.237

If S is periodic, M is a motif of S, but PDD will depend only on S, not on M .238

Definition 3.1 (PDD and AMD invariants). Let M = {p1, . . . , pm} be a finite239

subset of a discrete set S in a metric space X. Fix an integer k ≥ 1. For every point240

pi ∈ M , let d1(p) ≤ · · · ≤ dk(p) be the distances from p to its k nearest neighbors within241

the full set S (not restricted to M). The matrix D(S,M ; k) has m rows consisting242

of the distances d1(pi), . . . , dk(pi) for i = 1, . . . ,m. If any l ≥ 1 rows coincide, we243

collapse them into a single row and assign the weight l/m to this row. The resulting244
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matrix of maximum m rows and k+1 columns including the extra (say, 0-th) column of245

weights is the Pointwise Distance Distribution PDD(S,M ; k). The Average Minimum246

Distance AMDi is the weighted average of the i-th column in PDD(S,M ; k) for each247

i = 1, . . . , k. Let AMD(S,M ; k) denote the vector (AMD1, . . . ,AMDk).248

Definition 3.1 introduced the isometry invariant PDD(S,M ; k) of a pair (S,M)249

for a finite subset M in any Delone set S. For any l-periodic point set S ⊂ Rn,250

Theorem 3.1 will prove that PDD is independent of a motif M ⊂ S. We use the251

simpler notations PDD(S; k),AMD(S; k) in the finite (S = M) and periodic cases.252

Example 3.2 (4-point clouds T,K in Fig. 3 (left)). Table 1 shows the 4 × 3253

matrices D(S; 3) from Definition 3.1. The matrix D(T ; 3) in Table 1 has two pairs254

of identical rows, so the matrix PDD(T ; 3) consists of two rows of weight 1
2 below.255

The matrix D(K; 3) in Table 1 has only one pair of identical rows, so PDD(K; 3) has256

three rows of weights 1
2 ,

1
4 ,

1
4 . Then T,K are distinguished by PDDs even for k = 1.257

Table 1
Each point of T,K ⊂ R2 in Figure 3 (left) has distances to other points in increasing order. Af-

ter keeping only distances (not neighbors), the resulting PDDs distinguish T ̸≃ K, see Example 3.2.

points of T dist. to neighbor 1 dist. to neighbor 2 dist. to neighbor 3

(−2, 0)
√
2 to (−1,+1)

√
10 to (+1,+1) 4 to (+2, 0)

(+2, 0)
√
2 to (+1,+1)

√
10 to (−1,−1) 4 to (−2, 0)

(−1, 1)
√
2 to (−2, 0) 2 to (+1,+1)

√
10 to (+2, 0)

(+1, 1)
√
2 to (+2, 0) 2 to (−1,+1)

√
10 to (−2, 0)

points of K dist. to neighbor 1 dist. to neighbor 2 dist. to neighbor 3

(−1, 0)
√
2 to (0,−1)

√
2 to (0,+1) 4 to (3, 0)

(+3, 0)
√
10 to (0,−1)

√
10 to (0,+1) 4 to (−1, 0)

(0,−1)
√
2 to (−1, 0) 2 to (0,+1)

√
10 to (3, 0)

(0,+1)
√
2 to (−1, 0) 2 to (0,−1)

√
10 to (3, 0)

PDD(T ) =

(
1/2

√
2 2

√
10

1/2
√
2

√
10 4

)
̸= PDD(K) =




1/4
√
2

√
2 4

1/2
√
2 2

√
10

1/4
√
10

√
10 4


.258

Theorem 3.1 extends [63, Theorem 3.2], which was stated for n-periodic sets259

without proof, to all finite sets, l-periodic sets, and pairs (S,M) from Definition 3.1.260

Theorem 3.1 (invariance of PDD). (a) Any isometry S → Q mapping a finite261

subset M ⊂ S of m points to N ⊂ Q, we have PDD(S,M ; k) = PDD(Q,N ; k) and262

AMD(S,M ; k) = AMD(Q,N ; k) for any 1 ≤ k < m. Hence, if S = M is a finite263

space, then PDD(S; k) and AMD(S; k) are well-defined isometry invariants of S.264

(b) For any l-periodic point set S ⊂ Rn, where 1 ≤ l ≤ n, PDD(S; k) and AMD(S; k)265

are isometry invariants of S (independent of a motif M ⊂ S) for any k ≥ 1.266

Proof. (a) For any sets M ⊂ S and their isometric images N ⊂ Q, the invariance267

follows from the fact that any isometry preserves all inter-point distances.268

(b) For any l-periodic point set S = Λ+M ⊂ Rn, we first show that scaling up a cell269

U and hence the motif M = S ∩U of m points keeps PDD invariant. For any integer270

b ≥ 1, a matrix B ∈ GL(l;Z) with |detB| = b acts on the first l vectors v⃗1, . . . , v⃗l271

that generate the l-dimensional base parallelepiped P of U in Definition 1.2.272

Let B(U) ⊂ Rn denote the cell obtained from U by applying B to P and keeping273

all other basis vectors vl+1, . . . , vn fixed. Then D(S, S ∩B(U); k) from Definition 3.1274
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8 D. WIDDOWSON, V. KURLIN

has the larger size bm × k but (due to periodicity of S) splits into m blocks, each275

corresponding to b points of the scaled motif S∩B(U) that are obtained from a single276

point p ∈ M by translations by vectors of Λ. Since translations preserve distances,277

each of m blocks has b identical rows of distances to k neighbors in S, the same as in278

D(S,M ; k). Then PDD(S, S∩B(U); k) = PDD(S,M ; k) due to collapsing of identical279

rows in Definition 3.1. So PDD(S; k) is independent of any motif M = S ∩ U .280

Now we prove that PDD(S; k) is preserved by any isometry f of Rn. Any primitive281

cell U of S is bijectively mapped by f to the unit cell f(U) of Q = f(S), which should282

be also primitive. Indeed, if Q is preserved by a translation along a vector v that283

doesn’t have all integer coefficients in the basis of f(U), then S = f−1(Q) is preserved284

by the translation along f−1(v), which doesn’t have all integer coefficients in the basis285

of U , so U was non-primitive. Since U and f(U) have the same number of points286

from S and Q = f(S), the isometry f gives a bijection between the motifs of S,Q.287

For any periodic sets S,Q, because f maintains distances, every list of ordered288

distances from pi ∈ S ∩ U to its first k nearest neighbors in S coincides with the list289

of the ordered distances from f(pi) to its first k neighbors in Q. These coincidences290

of distance lists give PDD(S; k) = PDD(Q; k) after collapsing identical rows.291

The number k of neighbors is considered not a parameter that affects the invariant292

but as a degree of approximation like the number of decimal places on a calculator.293

If we increase k, more columns with larger values are added to PDD(S; k) but all294

previous distances remain the same. Definition 3.3 will help describe the asymptotic295

of PDD(S; k) as k → +∞ in Theorem 3.6, which uses Lemma 3.4 extending [65,296

Lemma 11] to l-periodic sets S ⊂ Rn for any 1 ≤ l ≤ n, see all skipped proofs in SM3.297

Definition 3.3 (Point Packing Coefficient PPC of a cell-periodic set S). For298

1 ≤ l ≤ n and a basis v⃗1, . . . , v⃗n ∈ Rn, consider the lattice the lattice Λ = {
l∑

i=1

civ⃗i |299

c1, . . . , cl ∈ Z} and the unit cell U = {
n∑

i=1

tiv⃗i | t1, . . . , tl ∈ [0, 1), tl+1, . . . , tn ∈ R}. A300

discrete set S ⊂ Rn is cell-periodic if S has a fixed number m points in every shifted301

cell U+v⃗ for all v⃗ ∈ Λ. If l < n, let Rl ⊂ Rn be the subspace spanned by v⃗1, . . . , v⃗l, then302

U is an infinite slab based on the l-dimensional parallelepiped of volume vol[U ∩Rl] .303

The volume of the unit ball in Rl is Vl =
πn/2

Γ( l
2 + 1)

, where Euler’s Gamma function304

[18] is Γ(m) = (m − 1)! and Γ(m2 + 1) =
√
π(m − 1

2 )(m − 3
2 ) · · · 1

2 for any integer305

m ≥ 1. Define the Point Packing Coefficient of S as PPC(S) = l

√
vol[U ∩Rl]

mVl
.306

Any l-periodic set is cell-periodic, but all cell-periodic sets form a wider collection307

of Delone sets and model disordered solid materials that can have an underlying lattice308

with atoms at different positions in periodically translated cells U + v⃗, see Fig. 1.309

Lemma 3.4 (bounds on points within a cylinder). For any 1 ≤ l ≤ n and a310

basis v⃗1, . . . , v⃗n ∈ Rn, let S ⊂ Rn be a cell-periodic set with a unit cell U based on the311

l-dimensional parallelepiped U ∩ Rl, where Rl ⊂ Rn is spanned by v⃗1, . . . , v⃗l. Define312

the width w of U as sup
u,v∈U∩Rl

|u⃗− v⃗|. For any point p ∈ S∩U and a radius r, consider313
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the cylinder C(p; r) = {
n∑

i=1

tiv⃗i such that t1, . . . , tn ∈ R and |p−
l∑

i=1

tiv⃗i| ≤ r} ⊂ Rn,314

the lower union U−(p; r) =
⋃

{(U + v⃗) such that v⃗ ∈ Λ, (U + v⃗) ⊂ C(p; r)} ⊂ Rn,315

the upper union U+(p; r) =
⋃

{(U + v⃗) such that v⃗ ∈ Λ, (U + v⃗) ∩ C(p; r) ̸= ∅}.316

Let the unions U±(p; r) contain m±(p; r) shifted cells of U + v⃗ for some v⃗ ∈ Λ. Let S
have m = |S ∩ U | points in U . Then the number of points from S in C(p; r) satisfies

(
r − w

PPC(S)

)l

≤ m−(p; r)m ≤ |S ∩ C(p; r)| ≤ m+(p; r)m ≤
(

r + w

PPC(S)

)l

.

Lemma 3.5 (distance bounds). In the notations of Lemma 3.4, let the subspace317

Rn−l be orthogonal to Rl, which spanned by the first l basis vectors of a cell U . Let318

the height h of a cell-periodic set S ⊂ Rn with the cell U be the maximum distance319

between points in the orthogonal projection of S to Rn−l, so if l = n, then h = 0. For320

any point p ∈ S ∩U , let dk(S; p) be the distance from p to its k-th nearest neighbor in321

the full set S. Then PPC(S) l
√
k − w < dk(S; p) ≤

√
(PPC(S) l

√
k + w)2 + h2, k ≥ 1.322

Theorem 3.6 (asymptotic of PDD(S; k) as k → +∞). For any point p in a cell-323

periodic set S ⊂ Rn, let dk(S; p) be the distance from p to its k-th nearest neighbor in324

S. Then lim
k→+∞

dk(S; p)
l
√
k

= PPC(S) and hence lim
k→+∞

AMDk(S)
l
√
k

= PPC(S).325

Proof of Theorem 3.6. Lemma 3.5 gives the following bounds for δk =
dk(S; p)

l
√
k

−326

PPC(S). The lower bound is δk > −uk, where uk =
w
l
√
k

→ 0 as k → +∞ because327

w is fixed. The upper bound is δk ≤
√

(PPC(S) + uk)2 + (h/ l
√
k)2 − PPC(S) → 0 as328

k → +∞, because h is fixed. Hence δk =
dk(S; p)

l
√
k

− PPC(S) → 0 as k → +∞.329

By Theorem 3.6, AMDk(S) and all distances in the last column of PDD(S; k)330

asymptotically approach PPC(S) l
√
k as k → +∞ and hence are largely determined331

by PPC(S) for large k. That is why the most descriptive information is contained332

in PDD(S; k) for smaller values of k, e.g. we use k = 100 atomic neighbors in most333

experiments on crystals. To neutralize the asymptotic growth, we subtract and also334

normalize by the term PPC(S) l
√
k to get simpler invariants under uniform scaling.335

Definition 3.7 (simplified invariants ADA, PDA,AND, PND). Let S ⊂ Rn be336

any l-periodic set with an underlying lattice generated by l vectors. The Average Devi-337

ation from Asymptotic is ADAk(S) = AMDk(S)−PPC(S) l
√
k for k ≥ 1. The Point-338

wise Deviation from Asymptotic PDA(S; k) is obtained from the matrix PDD(S; k) by339

subtracting PPC(S) l
√
j from any distance in a row i and a column j for i ≥ 1 ≤ j ≤ k.340

The Average Normalized Deviation is ANDk(S) = ADAk(S)/(PPC(S)
l
√
k), k ≥ 1.341

The Pointwise Normalized Deviation PND(S; k) obtained from PDA(S; k) by dividing342

every element in a row i and a column j by PPC(S) l
√
j for i ≥ 1 ≤ j ≤ k.343

Corollary 3.8 (invariance of AND,PND under uniform scaling). For any l-344

periodic set S ⊂ Rn, ANDk(S) and PND(S; k) in Definition 3.7 are invariant under345

isometry and uniform scaling for any k ≥ 1. Moreover, ANDk(S) → 0 as k → +∞.346
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10 D. WIDDOWSON, V. KURLIN

Proof. By Theorem 3.1, PDD(S; k) and hence all deviations in Definition 3.7 are347

invariant under isometry. Under uniform scaling p 7→ cp for a real constant c ̸= 0,348

any inter-point distance and PPC(S) = l

√
vol[U ∩Rl]

mVl
is multiplied by c because349

vol[U ∩ Rl] is scaled by the factor cl. Hence ANDk(S) and PND(S; k) are invariant350

under both isometry and uniform scaling. To prove that ANDk(S) → 0 as k → +∞,351

use Theorem 3.6: ANDk(S) =
ADAk(S)

PPC(S) l
√
k
=

AMDk(S)

PPC(S) l
√
k
− 1 → PPC(S)

PPC(S)
− 1 = 0.352

We conjecture that ADAk(S) → 0 as k → +∞ without the extra division by l
√
k353

for l ≥ 2, which is confirmed by experiments on crystals and holds for S = Zn in SM3.354

The key input sizes for computing PDD(S; k) of any l-periodic point set S ⊂ Rn355

are the number m of points in a unit cell U and the number k of neighbors. The356

full input consists of k, a basis of U and a motif of m points with coordinates in this357

basis as described in Definition 1.2. For a fixed dimension n and other parameters,358

the asymptotic complexity of PDD(S; k) will depend near linearly on both k,m.359

The output PDD(S; k) is a matrix with at most m rows and exactly k+1 columns,360

where m is the number of motif points. The first column contains the weights of rows,361

which sum to 1 and are proportional to the number of appearances of each row before362

collapsing in Definition 3.1, see a Python code in SM2 of supplementary materials.363

Theorem 3.9 (PDD complexity). Let S ⊂ Rn be any l-periodic set with a
minimum inter-point distance dmin and a unit cell U = P × Rn−l, where P ⊂ Rl is
a parallelepiped in the l-dimensional subspace Rl with the orthogonal subspace Rn−l

in Rn. Consider the width w = sup
u,v∈P

|u⃗− v⃗| and the height h equal to the maximum

distance between points in the orthogonal projection of S to Rn−l. If the motif M =
S ∩ U consists of m points, then PDD(S; k) can be computed for any k ≥ 1 in time

O(km(24n log k + logm) + 212nm log2 k + (28n/l)k log k + albk),

where a = 1+
2.5w + 2h

PPC(S)
and b = log(2PPC(S)+3w+5h)− log dmin. The complexity364

of AMD(S; k) and invariants PDA(S; k),PND(S; k) from Definition 3.7 is the same365

as of PDD(S; k) because the extra computations can be done in time O(km).366

Proof of Theorem 3.9. In the notations of Lemma 3.4, we have integers 1 ≤ l ≤ n367

and a basis v⃗1, . . . , v⃗n of Rn. The first l basis vectors v⃗1, . . . , v⃗l generate the subspace368

Rl ⊂ Rn and the lattice Λ ⊂ Rl. Fix the origin 0 ∈ Rn be at the center of the369

parallelepiped U ∩ Rl. Then any point p ∈ M = S ∩ U is covered by the closed370

ball B̄(0; r) for the radius r =
√

(0.5w)2 + h2 ≤ 0.5w + h. By Lemma 3.5, all k371

neighbors of p are covered by the closed cylinder C(0;R) of the radius R = r +372 √
(PPC(S) l

√
k + w)2 + h2 ≤ PPC(S) l

√
k + 1.5w + 2h. To generate all Λ-translates of373

M within C(0;R), we gradually extend U in cylindrical layers by adding more shifted374

cells U + v⃗ for vectors v ∈ Λ until we get the upper union U+(0;R) covering the375

cylinder C(0;R). The upper union U+(0;R) includes k neighbors of each motif point376

and has the size µ = |S ∩ U+(0;R)| = m+(0;R)m estimated by Lemma 3.4:377

µ ≤
(

R+ w

PPC(S)

)l

≤
(
PPC(S) l

√
k + 2.5w + 2h

PPC(S)

)l

=

(
l
√
k +

2.5w + 2h

PPC(S)

)l

=378
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= k

(
1 +

2.5w + 2h

PPC(S) l
√
k

)l

≤ k

(
1 +

2.5w + 2h

PPC(S)

)l

= alk, where a = 1 +
2.5w + 2h

PPC(S)
.379

For a nearest neighbor search [23], we can build a compressed cover tree on µ380

points of T = S ∩ U+(0;R) in time O(µc8min log
2R+h
dmin

) by [24, Theorem 3.7], where381

cmin ≤ 2n is the minimized expansion constant of T , and 2R+h
dmin

is the upper bound for382

the ratio of max/min inter-point distances. Then R ≤ PPC(S) l
√
k + 1.5w + 2h gives383

log(2R+ h) ≤ log(
l
√
k(2PPC(S) + 3w + 5h)) = log(2PPC(S) + 3w + 5h) + (log k)/l,384

so log
2R+ h

dmin
= b+

1

l
log k, where b = log(2PPC(S) + 3w + 5h)− log dmin.385

By [24, Theorem 4.9], using a compressed cover tree on T , we can find k neighbors386

of m points from S ∩ U among µ points of T in time O(mc2 log k(c10min logµ + ck)),387

where c ≤ 2n is the expansion constant of T . Because logµ ≤ log k + l log a, we can388

compute all distances from each of m points to their k nearest neighbors in T in time389

O(µ(b+ (log k)/l)c8min) +O(mc2 log k(c10min logµ+ ck)) ≤390

O(alk(b+ (log k)/l)28n) +O(m22n log k(210n(log k + l log a) + 22nk)) ≤391

O(albk + (28n/l)k log k) +O(24nm(k log k + 28n(log2 k + l log a log k)) ≤392

O(24n(m+ 24n/l)k log k + 212nm log2 k + albk), where we used l log a ≤ O(log k).393

The ordered lists of distances from points p ∈ S ∩ U to their k nearest neighbors394

in T are the rows of the matrix D(S; k). It remains to lexicographically sort m lists395

of ordered distances, which needs time O(km logm), because a comparison of ordered396

lists of the length k takes O(k) time. The total time for PDD(S; k) is397

O(24n(m+ 24n/l)k log k + 212nm log2 k + albk) +O(km logm) =398

O(km(24n log k + logm) + 212nm log2 k + (28n/l)k log k + albk).399

The worst-case estimate in Theorem 3.9 is conservative due to the upper bound400

2n for the expansion constants cmin, c from [24, Definition 1.4]. We conjecture that401

this upper bound can be reduced to 2l for any l-periodic point set S ⊂ Rn.402

For any fixed dimensions l ≤ n, if we ignore the parameters a, b, dmin, and PPC(S),403

then the complexity in Theorem 3.9 becomes O(km(log k + logm)), which is near-404

linear in both k,m. For the most practical dimensions l = n = 3, experiments in405

section 6 will report running times in minutes on a modest desktop computer for406

about 1.5 million real crystals from the world’s largest experimental databases.407

4. Lipschitz continuous Earth Mover’s Distance on invariants. This sec-408

tion proves the continuity of the vectorial invariants AMD,ADA,AND, matrix in-409

variants PDD,PDA,PND, and their moments. For matrix invariants, we will use410

the Earth Mover’s Distance (EMD) [53], which is well-defined for any weighted dis-411

tributions of different sizes. Definition 4.1 of EMD makes sense for any matrix412

invariant I(S) that is an unordered collection of row vectors R⃗i(S) with weights413

wi(S) ∈ (0, 1] satisfying
m(S)∑
i=1

wi(S) = 1. Each row R⃗i(S) should have a size indepen-414

dent of i. This size can be the number k of neighbors for PDD(S; k). For any vectors415

R⃗i = (ri1, . . . , rik) and R⃗j = (rj1, . . . , rjk), the Minkowski distance is Lq(R⃗i, R⃗j) =416

( k∑
l=1

|ril − rjl|q
)1/q

for any real q ≥ 1 and L+∞(R⃗i, R⃗j) = max
l=1,...,k

|ril − rjl|.417
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Definition 4.1 (Earth Mover’s Distance EMDq). Let discrete sets S,Q in a418

metric space have weighted distributions I(S), I(Q) as above. A flow from I(S) to419

I(Q) is an m(S) × m(Q) matrix whose element fij ∈ [0, 1] is a partial flow from420

R⃗i(S) to R⃗j(Q). For any real q ≥ 1, the Earth Mover’s Distance is the minimum cost421

EMDq(I(S), I(Q)) =
m(S)∑
i=1

m(Q)∑
j=1

fijLq(R⃗i(S), R⃗j(Q)) subject to
m(Q)∑
j=1

fij = wi(S) for422

i = 1, . . . ,m(S),
m(S)∑
i=1

fij = wj(Q) for j = 1, . . . ,m(Q),
m(S)∑
i=1

wi(S) = 1 =
m(Q)∑
j=1

wj(Q).423

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S)424

of the vector R⃗i(S) ‘flows’ into all vectors R⃗j(Q) via partial flows fij ∈ [0, 1] for425

j = 1, . . . ,m(Q). The second condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij426

from R⃗i(S) for i = 1, . . . ,m(S) ‘flow’ into R⃗j(Q) up to the maximum weight wj(Q).427

The last condition forces all vectors R⃗i(S) to ‘flow’ to all vectors R⃗j(Q).428

The EMD satisfies all metric axioms [53, appendix], needs O(m3 logm) time for429

distributions of a maximum size m and can be approximated in O(m) time [59, 55].430

The Lipschitz continuity of invariants in EMD will use bounded perturbations of431

points up to ε in the metric dX of an ambient space X. Because atoms are not outliers432

or noise, such perturbations can be formalized as the bottleneck distance dB(S,Q) =433

inf
g:S→Q

sup
p∈S

dX(g(p), p) minimized over all bijections g : S → Q between (possibly434

infinite) sets. This definition is computationally intractable even for finite sets due to435

exponentially many m! bijections between sets of m points. [63, Example 2.1] shows436

that the 1-dimensional lattices Z and (1 + δ)Z have dB = +∞ for any δ > 0.437

If S,Q are lattices of equal density (equal unit cell volume), they have a finite438

bottleneck distance dB by [21, Theorem 1(iii)]. If we consider only periodic point sets439

S,Q ⊂ Rn with the same density (or unit cells of the same volume), dB(S,Q) becomes440

a well-defined wobbling distance [11], which is still discontinuous under perturbations441

by [63, Example 2.2], see related results for non-periodic sets in [42].442

Recall that the packing radius r(S), which is the minimum half-distance between443

any points of S. Equivalently, r(S) is the maximum radius r to have disjoint open444

balls of radius r centered at all points of S. Theorem 4.2 substantially generalizes the445

fact that shifting any points up to ε changes the distance between them up to 2ε.446

Theorem 4.2 (Lipschitz continuity). Let M be a finite subset of a discrete set447

S in a space X with a metric dX . Let Q and its finite subset T be obtained from S448

and M , respectively, by perturbing every point of S up to ε in the metric dX . Fix any449

real q ∈ [1,+∞] and an integer k ≥ 1. Interpret q
√
k as 1 in the limit case q = +∞.450

(a) Then EMDq(PDD(S,M ; k),PDD(Q,T ; k)) ≤ 2ε q
√
k.451

(b) If S,Q are l-periodic and min{r(S), r(Q)} > ε, then PPC(S) = PPC(Q), and452

EMDq(PDA(S; k),PDA(Q; k)) ≤ 2ε q
√
k, EMDq(PND(S; k),PND(Q; k)) ≤ 2ε q

√
k

PPC(S)
.453

Theorem 4.2 is proved in SM3 of supplementary materials similar to [65, Lemma 8]454

for q = +∞. All columns of PDD,PDA,PND are ordered by the index k of neighbors.455

Though their rows are unordered (as points of a motif M), all such matrices even456

with different numbers of rows can be compared by Earth Mover’s Distance, or by457
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any other metrics on weighted distributions, see Definition 4.1. We can simplify any458

PDD into a fixed-size matrix, which can be flattened into a vector, while keeping the459

continuity and almost all invariant data. Any distribution of m unordered values can460

be reconstructed from its m moments below. When all weights wi are rational as461

in our case, the distribution can be expanded to equal-weighted values a1, . . . , am.462

The m moments can recover all a1, . . . , am as roots of a degree m polynomial whose463

coefficients are expressed via the m moments [45], e.g. any a, b ∈ R can be found from464

a+ b, a2 + b2 as the roots of t2 − (a+ b)t+ ab, where ab = 1
2 ((a+ b)2 − (a2 + b2)).465

Let A be any unordered set of real numbers a1, . . . , am with weights w1, . . . , wm,466

respectively, such that
m∑
i=1

wi = 1. For any integer b ≥ 1, the b-th moment [36,467

section 2.7] is µb(A) = b

√
m1−b

m∑
i=1

wiabi , so µ1(A) =
m∑
i=1

wiai is the usual average.468

For any integer b ≥ 2, we avoid subtracting µ1 from the numbers a1, . . . , am,469

which would convert µ2 into the standard deviation σ, and normalize by the factor470

m(1/b)−1 to guarantee the continuity of moments with the Lipschitz constant λ = 2.471

Definition 4.3 (b-moments matrix µ(b)). Fix any integer b ≥ 1. Let I(S) be472

a matrix invariant of a cell-periodic set S. For every column A of I(S), consisting473

of unordered numbers with weights, write the column (µ1(A), . . . , µb(A)). All new474

columns form the b-moments matrix µ(b)[I(S)], which has b canonically ordered rows.475

For b = 1, the 1 × k matrix µ(1)[PDD(S; k)] appeared in Definition 3.1 as the476

vector AMD(S; k) = (AMD1, . . . ,AMDk). All rows and columns of the b-moments477

matrix µ(b)[I(S)] are ordered but this matrix is a bit weaker than I(S) because each478

column can be reconstructed from its moments (for a large enough b) only up to479

permutation. We can flatten any moments matrix µ(b)[I(S)] with indexed entries to480

a vector and use this vector for machine learning on discrete sets S [6, 5].481

Theorem 4.4 substantially extends [63, Theorem 4.2] to other isometry invariants482

of any finite and l-periodic sets for a Minkowski metric Lq with any real q ≥ 1.483

Theorem 4.4 (lower bounds of EMD). For finite or l-periodic sets S,Q ⊂ Rn,484

(a) EMDq(PDD(S; k),PDD(Q; k)) ≥ Lq(AMD(S; k),AMD(Q; k));485

(b) EMDq(PDA(S; k),PDA(Q; k)) ≥ Lq(ADA(S; k),ADA(Q; k));486

(c) EMDq(PND(S; k),PND(Q; k)) ≥ Lq(AND(S; k),AND(Q; k)) for any q, k ≥ 1.487

5. Generic completeness of Pointwise Distance Distributions. We prove488

the generic completeness in both finite (easy) and periodic (much harder) cases.489

Theorem 5.1. Any cloud C ⊂ Rn of m unordered points with distinct inter-point490

distances can be reconstructed from PDD(C;m− 1), uniquely up to isometry.491

Proof of Theorem 5.1. Under the given condition of general position, every inter-492

point distance |p− q| between points p, q ∈ C appears twice in PDD(C;m− 1): once493

in the row of p and once in the row of q. After choosing an arbitrary order of points,494

PDD(C;m−1) suffices to reconstruct the classical distance matrix on ordered points.495

This distance matrix enables a uniquely reconstruction of C up to isometry [57, 38].496

For a periodic point set S ⊂ Rn, the generic completeness of PDD is much harder497

because infinitely many distances between points of S are repeated due to periodicity.498

We introduce a few auxiliary concepts to define distance-generic periodic sets later.499
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For any point p in a lattice Λ ⊂ Rn, the open Voronoi domain V (Λ; p) = {q ∈500

Rn such that |q − p| < |q − p′| for any p′ ∈ Λ − p} is the neighborhood of all points501

q ∈ Rn that are strictly closer to p than to all other points p′ of the lattice Λ [22].502

The Voronoi domains V (Λ; p) of different points p ∈ Λ are disjoint translation503

copies of each other and their closures tile Rn, so ∪p∈ΛV̄ (Λ; p) = Rn. For example,504

for a generic lattice Λ ⊂ R2, the domain V (Λ; p) is a centrally symmetric hexagon.505

Points p, p′ ∈ Λ are Voronoi neighbors if their Voronoi domains share a boundary506

point, so V̄ (Λ; p)∩ V̄ (Λ, p′) ̸= ∅. Below we always assume that any lattice Λ is shifted507

to contain the origin 0, also any periodic point set S = Λ+M has a point at 0.508

Definition 5.2 (neighbor set N(Λ) and basis distances). For any lattice Λ ⊂509

Rn, the neighbor set of the origin 0 is N(Λ) = Λ∩ B̄(0; r)\{0} for a minimum radius510

r such that N(Λ) is not contained in any affine (n− 1)-dimensional subspace of Rn,511

and N(Λ) includes all n+ 1 nearest neighbors (within Λ) of any point q ∈ V (Λ; 0).512

Consider all unordered points p1, . . . , pn ∈ N(Λ) that are linearly independent,513

i.e. the vectors p⃗1, . . . , p⃗n form a linear basis of Rn. For any point q ∈ V (Λ; 0), a514

lexicographically smallest list of distances d1(q) ≤ · · · ≤ dn(q) from q to all linearly515

independent points p1, . . . , pn ∈ N(Λ) is called the list of basis distances of q.516

The linear independence of vectors p⃗1, . . . , p⃗n in Definition 5.2 guarantees that517

any point q is uniquely determined in Rn by its distances |q|, d1(q), . . . , dn(q) to n+1518

neighbors 0, p1, . . . , pn, which are not in the same (n− 1)-dimensional subspace.519

Let Λ be generated by (2, 0), (0, 1). The Voronoi domain V (Λ; 0) is the rectangle520

(−1, 1)× (−0.5, 0, 5). The neighbor set N(Λ) ⊂ Λ includes the 3rd neighbors (0,±2)521

of the points (0,±0.4) ∈ V (Λ; 0). Indeed, if in Definition 5.2 Λ has a radius r < 2,522

then Λ∩ B̄(0; r)\{0} = {(0,±1)} is in the 1-dimensional subspace (y-axis) of R2. For523

q = (0, 0.4), considering all pairs (p⃗1, p⃗2) that generate R2 among the four possibilities524

((0,±1), (±2, 0)), we find the basis distances d1(q) = 0.6 < d2(q) =
√
0.42 + 22 ≈ 2.04525

for the 2nd and 3rd lattice neighbors p1 = (0, 1) and p2 = (±2, 0) of q.526

Lemma 5.3. The neighbor set N(Λ) of any lattice Λ is covered by B̄(0; 2R(Λ)),527

where the covering radius R(Λ) is the minimum R > 0 such that ∪p∈ΛB̄(p;R) = Rn.528

Proof of Lemma 5.3. Any point p in the closure V̄ (Λ; 0) of the Voronoi domain529

has n+ 1 lattice neighbors (within Λ) among the origin 0 ∈ Λ and at least 2(2n − 1)530

Voronoi neighbors of 0 [16]. In Rn, any vertex of the boundary of V (Λ; 0) is equidistant531

to at least n+1 points of Λ (the origin 0 and its n Voronoi neighbors). The longest of532

these distances to Voronoi neighbors is the covering radius R(Λ). The ball B̄(0; 2R(Λ))533

covers all Voronoi neighbors of 0 and hence the whole neighbor set N(Λ).534

Definition 5.4 (a distance-generic set). A periodic point set S = M + Λ ⊂ Rn535

with the origin 0 ∈ Λ ⊂ S is called distance-generic if the following conditions hold.536

(5.4a) For any points p, q ∈ S ∩ V (Λ; 0), the vectors p⃗, q⃗ are not orthogonal.537

(5.4b) For vectors u⃗, v⃗ between any two pairs of points in S, if |u⃗| = l|v⃗| ≤ 2R(Λ) for538

l = 1, 2, then u⃗ = ±lv⃗ and v⃗ ∈ Λ.539

(5.4c) For any point q ∈ S ∩ V (Λ; 0), let d0 = |q| be its distance to the closest540

neighbor p0 = 0 in Λ. Take any linearly independent points p1, . . . , pn ∈ N(Λ) and541

any distances d1 ≤ · · · ≤ dn from q to some points in S ∩ B̄(0; 2R(Λ)). The n + 1542

spheres ∂B(pi; di) can meet at a single point of S ∩ V (Λ; 0) only if d1 ≤ · · · ≤ dn are543

the basis distances of q and only for two tuples p1, . . . , pn ∈ N(Λ) related by v⃗ 7→ −v⃗.544
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Condition (5.4b) means that all inter-point distances are distinct apart from nec-545

essary exceptions due to periodicity. Since any periodic set S = M + Λ ⊂ Rn is546

invariant under translations along all vectors of Λ, condition (5.4b) for |v⃗| ≤ 2R(Λ)547

can be checked only for vectors from all points of S in the original Voronoi domain548

V (Λ; 0) to all points in the domain 3V (Λ; 0) extended by factor 3.549

Condition (5.4b) implies that S has no points on the boundary ∂V (Λ; 0), because550

any such point is equidistant to points 0, v ∈ Λ and hence should belong to Λ.551

Let a lattice distance be the Euclidean distance from any point p ∈ M = S ∩552

V (Λ; 0) to its lattice translate p⃗ + v⃗ for all v⃗ ∈ Λ. Condition (5.4a) guarantees that553

only a lattice distance d appears together with 2d (and possibly with higher multiples)554

in a row of PDD(S; k). Any lattice distance d and its multiples are repeated twice in555

every row, because any lattice is centrally symmetric.556

Lemma 5.5 (almost any periodic set is distance-generic). Let S = M + Λ ⊂ Rn557

be any periodic point set. For any ε > 0, one can perturb coordinates of a basis of558

Λ and of points from M up to ε such that the resulting perturbation S′ of S is a559

distance-generic periodic point set in the sense of Definition 5.4.560

Proof. We can assume that the motif M of S is a subset of the open Voronoi561

domain V (Λ; 0) and include the origin 0. We show below that conditions (5.4a,b)562

define a codimension 1 discriminant (singular subspace) in the space of all parameters563

P that are coordinates of points of M and of basis vectors of Λ. In condition (5.4a),564

for any points p, q ∈ V (Λ; 0), the orthogonality is expressed as fa(p, q) = p⃗ · q⃗ =565
n∑

i=1

piqi = 0. In condition (5.4b), for any vectors u⃗, v⃗ that join points of S, have a566

maximum length 2R(Λ), and satisfy u ̸= ±lv⃗ for l = 1, 2, the equality |u⃗| = l|v⃗| can be567

written as fb(u, v) =
n∑

i=1

u2
i − l2

n∑
i=1

v2i = 0. So condition (5.4a) forbids a codimension568

1 subspace defined by finitely many equations fb(u, v) = 0 for all u, v above.569

Similarly, condition (5.4c) can be written via polynomial equations in point coor-570

dinates. For any fixed radii d0, . . . , dn, almost all n+ 1 spheres in Rn, whose centers571

are not in any (n − 1)-dimensional affine subspace, have no common points. Hence572

condition (5.4c) also forbids a codimension 1 subspace. All involved functions in573

equations above are continuous in the coordinates of points and basis vectors. Then574

a motif M = S ∩ V (Λ; 0) and a basis of Λ can be slightly perturbed to move S to575

S′ outside the union of all finitely many codimension 1 subspaces above. Hence any576

periodic point set S can be made distance-generic by a small enough perturbation.577

The number m of points in a unit cell U is an isometry invariant because any578

isometry maps U to another cell where the motif S∩U has the same size. In dimensions579

n = 2, 3, any lattice Λ can be reconstructed from its isometry invariants [41, 39].580

Theorem 5.6 reconstructs a periodic point set S = M + Λ ⊂ Rn in any dimen-581

sion n ≥ 2 from PDD(S; k) assuming that an n-dimensional lattice Λ of S is given.582

Complete isometry invariants of lattices in dimensions n = 2, 3 appeared in [41, 39].583

Theorem 5.6 (generic completeness of PDD). Let S = M + Λ ⊂ Rn be any584

distance-generic periodic set whose motif M has m points. Let R(Λ) be the smallest585

radius R such that all closed balls with centers p ∈ Λ and radius R cover Rn. For any586

k such that all distances in the last column of PDD(S; k) are larger than 2R(Λ), the587

set S can be reconstructed from Λ, m and PDD(S; k), uniquely up to isometry in Rn.588
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Proof. The given number m of points in a unit cell U of S is a common multiple589

of all denominators in rational weights of the rows in the given matrix PDD(S; k).590

Enlarge PDD(S; k) by replacing every row of a weight w with the integer number mw591

of identical rows having the same weight 1
m . One can assume that the origin 0 ∈ Λ592

belongs to the motif M of S and is represented by the first row of PDD(S; k).593

If PDD(S; k) has m ≥ 2 rows, we will reconstruct all other m − 1 points of the594

periodic point set S within the open Voronoi domain V (Λ; 0). No points of S can be595

on the boundary of V (Λ; 0) due to condition (5.4b) on distinct distances.596

Remove from each row of PDD(S; k) all lattice distances between any points of597

Λ. Then every remaining distance is between only points p, q ∈ S such that p⃗− q⃗ ̸∈ Λ.598

Take a unique point q ∈ S ∩ V (Λ; 0) \ {0} that has the smallest distance d0 = |q|599

to the origin and hence uniquely determined in the row of q in PDD(S; k). Then we600

will look for n basis distances d1 < · · · < dn from q to its further n lattice neighbors601

p1, . . . , pn ∈ N(Λ) ⊂ Λ − 0 such that p⃗1, . . . , p⃗n form a linear basis of Rn. All basis602

distances d0, . . . , dn are distinct due to (5.4b). By Lemma 5.3 they appear once in603

both rows of the points 0, q ∈ S in PDD(S; k) after the shortest distance d0 = |q|.604

Though the basis distances of q may not be the n smallest values appearing after605

d0 = |q| in the first and second rows of PDD(S; k), we will try all subsequences606

d1 < · · · < dn of distinct distances shared by both rows. Similarly, we cannot be sure607

that n closest neighbors of q in S \ {0} define linearly independent vectors of Λ.608

Hence we try all linearly independent points p1, . . . , pn ∈ N(Λ). For all finitely609

many choices, we check if the n + 1 spheres ∂B(pi; di) meet at a single point in610

V (Λ; 0), which will be the required point q. These (n−1)-dimensional spheres are 1D611

circles for n = 2 and 2D spheres for n = 3. Condition (5.4c) will guarantee below a612

reconstruction of q as a single intersection of these n+1 spheres of dimension n− 1.613

The basis distances d1 < · · · < dn of q should form the lexicographically smallest614

list among all lists of distances from q to points p1, . . . , pn ∈ N(Λ). This smallest615

list emerges for at most two tuples of linearly independent points p1, . . . , pn ∈ N(Λ)616

related by the isometry v⃗ 7→ −v⃗, which preserves Λ. For a first reconstruction outside617

Λ, we choose any of these tuples and find the intersection point q = ∩n
i=0∂B(pi; di).618

Any other point p ∈ (S \ {0, q}) ∩ V (Λ; 0) is uniquely determined similarly to619

the point q above by using its basis distances d0(p) < d1(p) < · · · < dn(p) to points620

0 = p0, p1, . . . , pn ∈ N(Λ). At the end of reconstruction, we have a final choice between621

±p symmetric with respect to the origin 0. Since the second point q is already fixed,622

the third point p is also restricted by the distance |p− q| appearing once only in the623

second and third rows of PDD(S; k). The distance |p− q| doesn’t help to resolve the624

ambiguity between ±p only if q belongs to the bisector of points equidistant to ±p.625

In this case, p, 0, q form a right-angle triangle, which is forbidden by condition (5.4a).626

Hence p is uniquely determined by the already fixed point q and lattice Λ.627

6. Detecting near-duplicates in the world’s largest databases. This sec-628

tion reports thousands of previously unknown (near-)duplicates in the world’s largest629

databases [60, 30, 67, 34]. The sizes in Table 2 below are the numbers of all periodic630

crystals (with no disorder and full geometric data) in September 2024 (total number631

is 1,433,650, nearly 1.5 million), see all experimental details in SM1.632

We first used the vector ADA(S; 100) to find nearest neighbors across all databases633

by k-d trees [26] up to L∞ ≤ 0.01Å. Since the smallest inter-atomic distances are634

about 1Å = 10−10m, atomic displacements up to 0.01Å are considered experimental635
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Table 2
Links and sizes (numbers of pure periodic crystals) of the world’s largest databases.

database and web address crystals
CSD : Cambridge Structural Database, http://ccdc.cam.ac.uk 831,126
COD : Crystallography Open Database, www.crystallography.net/cod 344,127
ICSD : Inorganic Crystal Structures, icsd.products.fiz-karlsruhe.de 105,162
MP : Materials Project, http://next-gen.materialsproject.org 153,235

noise. For the closest pairs found by ADA(S; 100), the stronger PDA(S; 100) can636

have only equal or larger EMD ≥ L∞ by Theorem 4.4. The CSD, COD, ICSD should637

contain experimental structures. MP is obtained from ICSD by extra optimization.638

Table 3 shows that the well-curated 59-year-old CSD has 0.9% near-duplicate639

crystals, while more than a third of the ICSD consists of near-duplicates that are640

geometrically almost identical so that all atoms can be matched by an average per-641

turbation up to 0.01Å. Table 1 in [3, section 6] reported many thousands of exact642

duplicates, where chemical elements were replaced while keeping all coordinates fixed.643

These replacements are physically impossible without more substantial perturbations.644

Five journals are investigating integrity [12], see details in appendix SM1.645

The bold numbers in Table 3 count near-duplicates and their percentages within646

each database, which should be filtered out else the ground truth data becomes skewed.647

Other numbers are counts and percentages across different databases.648

Table 3
Count and percentage of all pure periodic crystals in each database (left) found to have a near-

duplicate in other databases (top) by the distance EMD < 0.01Å on matrices PDA(S; 100).

databases CSD COD ICSD MP
near-duplicates count % count % count % count %
CSD 7687 0.9 272649 32.8 4649 0.6 21 0.0
COD 276328 80.3 19231 5.6 36553 10.6 5239 1.52
ICSD 4736 4.5 48899 46.5 35189 33.5 16386 15.6
MP 64 0.0 11989 7.82 14312 9.3 19177 12.5

In the past, the (near-)duplicates were impossible to detect at scale, because the649

traditional comparison through iterative alignment of 15 (by default) molecules by650

the COMPACK algorithm [15] is too slow for all-vs-all comparisons. Tables 4 and 5651

compare the running times: hours of PDA(S; 100) vs years of RMSD, extrapolated652

for the same machine from the median time 117 milliseconds (582 ms on average) for653

500 random pairs in the CSD. On the same 500 pairs, PDA(S; 100) for two crystals654

and their distance EMD together took only 7.48 ms on average. All experiments were655

done on a typical desktop computer (AMD Ryzen 5 5600X 6-core, 32GB RAM).656

7. Discussion. For hundreds of years, crystals were classified almost exclusively657

by discrete tools such as space groups or by using reduced cells, which are unique658

in theory. Fig. 2 (left) showed that any known crystal can be disguised by changing659

a unit cell, shifting atoms a bit, changing chemical elements, then claimed as ‘new’,660

see SM1. Such artificially generated structures threaten the integrity of experimental661

databases [12], which are skewed by previously undetectable near-duplicates.662

These challenges motivated the stronger questions “how much different?” and663

“can I get a structure from its code?”, which were formalized in Problem 1.6 aiming664
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Table 4
Running times in seconds (less than 8.5 hours in total) to find all near-duplicates in Table 3

with EMD ≤ 0.01Å on PDA(S; 100) across all major databases, compare with years in Table 5.

databases CSD COD ICSD MP sum of times, hrs:min:sec
CSD 403.6 1979.3 42.9 6.2 0:40:32
COD 1979.3 609.7 2249.8 1525.4 1:46:05
ICSD 42.9 2249.8 3362.1 4428.1 2:35:78
MP 6.2 1525.4 4428.1 4431.8 2:53:21

Table 5
These times for all comparisons by COMPACK [15] are extrapolated on the same machine,

which completed Table 3 of near-duplicates across all the major databases within 8.5 hours.

database periodic crystals all unordered pairs time, seconds years
CSD 831,126 345,384,798,375 4.04× 1010 1280.5
COD 344,127 59,211,524,001 6.93× 109 219.7
ICSD 105,162 5,529,470,541 6.47× 108 20.5
MP 153,235 11,740,405,995 2.75× 109 87.1

for a continuous parametrization of the space of crystals. One limitation is that PDD665

is not proved to be complete and a random PDD may not be realizable by a crystal666

because inter-atomic distances cannot be arbitrary, which we plan to improve in future667

work for a full solution of Problem 1.6 in the periodic case. However, these invariants668

already parametrize the ‘universe’ containing all known crystals as ‘shiny stars’ and669

all not yet discovered crystals hidden in empty spots on the same map. Appendix SM1670

shows these geographic-style maps of all four databases in our invariant coordinates.671

The key impact is the efficient barrier for noisy disguises of known structures672

because the invariants quickly find nearest neighbors of newly claimed materials in673

the existing databases, as shown for all crystals from GNoME [3] and A-lab [64].674
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SUPPLEMENTARY MATERIALS: POINTWISE DISTANCE1

DISTRIBUTIONS FOR DETECTING NEAR-DUPLICATES IN2

LARGE MATERIALS DATABASES∗3

DANIEL E. WIDDOWSON† AND VITALIY A. KURLIN‡4

SM1. Details of experiments on the world’s largest databases. This5

appendix describes the main experiments in more detail. Some entries in the CSD6

and COD are incomplete or disordered (not periodic). After removing such entries,7

we were left with 831,126 CSD structures and 344,127 COD structures.8

Firstly, we computed µ(10)[PDD(S; 100)] for all entries, taking 27 min 33 sec for9

the CSD and 12 mins 15 sec for COD (2 ms per structure on average). To find exact10

matches between databases, we make use of the k-d tree data structure, designed for11

fast nearest neighbor lookup. A k-d tree can be constructed from any collection of12

vectors, which can then be queried for a number of nearest neighbors of a new vector,13

using a binary tree style algorithm with logarithmic search time. We flattened each14

matrix µ(10)[PDD(S; 100)] to a vector with 1000 dimensions, constructed a k-d tree15

for both CSD and COD, then queried the 10 nearest neighbors for each item in the16

other. If the most distant neighbor for any entry is closer than the threshold 10−13Å17

(within floating point error), we extend the search and find more neighbors until all18

pairs within the threshold are found. We were left with a total of 270,669 matches;19

an overlap between the databases of one third of the CSD and almost 80% of COD.20

Of particular interest are the 26 pairs which have different compositions, as the21

impossibility of complex organic structures sharing the exact same geometry but not22

composition implies an error or labeling issue. The pairs were confirmed as geometric23

duplicates by checking their CIFs and found to have different compositions for the24

reasons in Table SM1 summarized below.25

• The original CIF has atoms simultaneously labeled as two types or disagree-26

ment with what is reported in the published paper (6 pairs),27

• Atoms are labeled as two types in the COD CIF (5 pairs),28

• Geometric duplicates known to the CSD gave a match with different compo-29

sitions (4 pairs),30

• A remark in the CSD entry explains that atoms were replaced in the curation31

process because the deposited CIF was incorrect (8 pairs),32

• The COD and CSD entries disagree for an unknown reason (3 pairs).33

In addition to cross-comparing the CSD and COD, we included the ICSD and34

Materials Project database (MP) and compared them all pairwise, as well as searching35

for duplicates within each. Table SM2 below shows how many matches were found,36

and how many also shared the same composition.37

Table SM3 compares properties of past and new descriptors38

∗LaTeX2e Standard Macros were used from https://epubs.siam.org/journal-authors#macros
Funding: Royal Society APEX fellowship APX/R1/231152, New Horizons grant EP/X018474/1

†Department of Computer Science, Liverpool, UK (D.E.Widdowson@liverpool.ac.uk).
‡Department of Computer Science, Liverpool, UK (vkurlin@liv.ac.uk, http://kurlin.org).
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CSD refcode COD ID Notes
LAVFAP 2001334 Mixed types in CIF
ZAYRUM 2003941 Mixed types in CIF
FONGAQ01 2005101 Mixed types in CIF
TIPYOG 2005914 Mixed types in CIF
HABTAF 2001740 Mixed types in CIF
AJIRAM01 2100097 Mixed types in CIF
LABSAI 2001822 Mixed types in CIF
DECTAI 4065524 Mixed types in CIF
WATMIO 4309447 Mixed types in CIF
NAJQUK 4323901 Mixed types in CIF
PIHJUL 4030494 Mixed types in CIF
ELOJOE 4314231 CSD remarks replaced atom
MARSIH 4321045 CSD remarks replaced atom
KUTWUU 7126770 CSD remarks replaced atom
XAVDEF 4103386 CSD remarks replaced atom
JEMLAP 4101489 CSD remarks replaced atom
QUCXAP 7117360 CSD remarks replaced atom
PIBTAW 1505325 CSD remarks replaced atom
UKAXUB 7234657 CSD remarks replaced atom
POCLOK 2220314 COLYEI is a duplicate
COLYEI 8102533 POCLOK is a duplicate
JEPLIA 2213484 HIFCAB is a duplicate
LALNET 8102594 POPCAA is a duplicate
SELHAU 4027023 One entry is mistaken
PINHUP 1558382 One entry is mistaken
KABHOL 4113866 One entry is mistaken

Table SM1
26 matches between the CSD and COD have identical geometry but different compositions.

databases matches same composition
CSD vs COD 270,669 270,583
CSD vs ICSD 3,913 3,913
COD vs ICSD 35,051 31,918
COD vs MP 2 2
ICSD vs MP 17 7

Table SM2
Number of exact matches (EMD within 10−13Å) between four databases.

Descriptor Invariant Continuity Complete Reconstruction Time
primitive cell ✓
reduced cell ✓ ✓
space group ✓ ✓
PDF [SM8] ✓ ✓ ✓
SOAP [SM2] ✓ ✓ ✓
densities [SM4] ✓ ✓ ✓* ✓*
isosets [SM1] ✓ ✓ ✓ ✓ ✓*
AMD ✓ ✓ ✓
PDD ✓ ✓ ✓* ✓* ✓

Table SM3
Comparison of crystal descriptors with regards to the requirements of Problem 1.6. ✓* in the

‘Computable’ column indicates that only an approximate algorithm exists for distances, and ✓* in
the ‘Complete’ and ‘Reconstruction’ columns means that the condition holds in general position.
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Fig. SM1. The projections of the CSD in the invariants PPC,ADA1,ADA2,ADA3.

SM2. Examples and instructions for the PDD code and data. This ap-39

pendix explains the code at https://pypi.org/project/average-minimum-distance.40

SM2.1. Pseudocode for computing Pointwise Distance Distributions.41

The algorithm accepts any periodic point set S ⊂ Rn in the form of a unit cell U42

and a motif M ⊂ S. The cell is given as a square n × n matrix with basis vectors43

in the columns, and the motif points in Cartesian form lying inside the unit cell.44

For dimension 3, the typical Crystallographic Information File (CIF) with six unit45

cell parameters and motif points in terms of the cell basis is easily converted to46

this format. Otherwise, the unit cell and motif points can be given directly, in any47

This manuscript is for review purposes only.



SM4 D. WIDDOWSON, V. KURLIN

Fig. SM2. The projections of the COD in the invariants PPC,ADA1,ADA2,ADA3.

dimension. Specifically, the PDD function’s interface is as follows:48

Input:49

• motif: array shape (m,n). Coordinates of motif points in Cartesian form.50

• cell: array shape (n, n). Represents the unit cell in Cartesian form.51

• k: int > 0. Number of columns to return in PDD(S; k).52

Output:53

• pdd: array with k + 1 columns.54

Before giving the pseudocode, we outline the key objects and functions in use:55

• A generator g, which creates points from the set S to find distances to,56

• KDTrees (canonically k is the dimension here, in our case it’s denoted n),57
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Fig. SM3. The projections of the ICSD in the invariants PPC,ADA1,ADA2,ADA3.

data structures designed for fast nearest-neighbor lookup in Rn.58

Once g is constructed, next(g) is called to get new points from the infinite set S.59

The first call returns all points in the given unit cell (i.e. the motif), and successive60

calls returns points from unit cells further from the origin in a spherical fashion.61

A KDTree is constructed with a point set T , then queried with another Q, re-62

turning a matrix with distances from all points in Q to their nearest neighbors (up to63

some given number, k below) in T , as well as the indices of these neighbors in T .64

The functions collapse_equal_rows and lexsort_rows, which perform the col-65

lapsing and lexicographical sorting steps of computing PDD, respectively, are assumed66
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Fig. SM4. The projections of the MP in the invariants PPC,ADA1,ADA2,ADA3.

to be implemented elsewhere. The following pseudocode finds PDD(S; k) for a peri-67

odic set S described by motif and cell:68

def PDD(motif, cell, k):69

70

cloud = [] # contains points from S71

g = point_generator(motif, cell)72

73

# at least k points will be needed74

while len(cloud) < k:75
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points = next(g)76

cloud.extend(points)77

78

# first distance query79

tree = KDTree(cloud)80

D_, inds = tree.query(motif, k)81

D = zeros_like(D_)82

83

# repeat until distances don’t change,84

# then all nearest neighbors are found85

while not D == D_:86

D = D_87

cloud.extend(next(g))88

tree = KDTree(cloud)89

D_, inds = tree.query(motif, k)90

91

pdd = collapse_equal_rows(D_)92

pdd = lexsort_rows(pdd)93

return pdd94

SM2.2. Instructions for the attached PDD code and specific examples.95

A Python script implementing Pointwise Distance Distributions along with examples96

can be found in the zip archive included in this submission. Python 3.7 or greater is97

required. The dependency packages are NumPy (< 1.22), SciPy (≥ 1.6.1), numba (≥98

0.55.0) and ase (≥ 3.22.0); if you do not wish to affect any currently installed versions99

on your machine, create and activate a virtual environment before the following.100

Unzip the archive and in a terminal navigate to the unzipped folder. Install the101

requirements by running pip install -r requirements.txt. Run python followed102

by the example script of choice, and then any arguments (outlined below), e.g.103

$ python kite_trapezium_example.py104

105

trapezium: [(0, 0), (1, 1), (3, 1), (4, 0)]106

PDD:107

[[0.5 1.41421356 2. 3.16227766]108

[0.5 1.41421356 3.16227766 4. ]]109

110

kite: [(0, 0), (1, 1), (1, -1), (4, 0)]111

PDD:112

[[0.25 1.41421356 1.41421356 4. ]113

[0.5 1.41421356 2. 3.16227766]114

[0.25 3.16227766 3.16227766 4. ]]115

116

EMD between trapezium and kite: 0.874032117

Here is the list of included example scripts and their parameters:118

• kite_trapezium_example.py prints the PDDs of the 4-point sets K (kite)119

and T (trapezium) in Fig. SM5 (left), along with their EMD.120

• 1D_sets_example.py shows that the 1D periodic sets in Fig. SM5 (right) are121

distinguished by their PDDs for any 0 < r ≤ 1. This script requires r to be122

passed after the file name, e.g. ‘python 1D_sets_example.py 0.5’.123
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Fig. SM5. Left: the 4-point sets K = {(±2, 0), (±1, 1)} and T = {(±2, 0), (−1,±1)} have the
same pairwise distances

√
2,

√
2, 2,

√
10,

√
10, 4. Right: the sequences S(r) = {0, r, 2+ r, 4}+8Z and

Q(r) = {0, 2+r, 4, 4+r}+8Z for 0 < r ≤ 1 have the same Patterson function [SM6, p. 197, Fig. 2].

• T2_14_15_example.py compares the crystals shown in Fig. SM6, whose orig-124

inal CIFs are included. This optionally accepts the number k of columns in125

the computed PDD, e.g. ‘python T2_14_15_example.py --k 50’ compares126

by PDD with k = 50. If not included, k = 100 is used as the default.127

Fig. SM6. Crystals 14, 15 from the database of 5679 simulated crystals reported in [SM7]
consist of identical T2 molecules and have very different Crystallographic Information Files (with
different motifs in unit cells of distinct shapes) but are nearly identical under isometry.

• CSD_duplicates_example.py computes and compares the PDDs of isometric128

crystals from the CSD discussed in section SM1, giving distances of exactly129

zero. This optionally accepts the parameter k controlling the number of130

columns in the computed PDD, in the same way as T2_14_15_example.py.131

If you wish to run the code on your own sets or CIF files, you can use the functions132

exposed in the main script pdd.py. Use pdd.read_cif() to parse a cif and return a133

crystal, or define one manually as a tuple (motif, cell) with NumPy arrays. Pass134

this as the first argument to pdd.pdd() with an integer k as the second to compute the135

PDD. Pass two PDDs to pdd.emd() to calculate the Earth mover’s distance between136

them. For finite sets, the function pdd.pdd_finite() accepts just one argument, an137

array containing the points, and returns the PDD.138

SM3. Detailed proofs of auxiliary lemmas and Theorem 4.2. This ap-139

pendix proves Lemmas 3.4-3.5, which were used in Theorem 3.6, and Theorem 4.2.140

Proof of Lemma 3.4. Intersect the three regions U−(p; r) ⊂ C(p; r) ⊂ U+(p; r)141

with S in Rn and count all points: |S ∩ U−(p; r)| ≤ |S ∩ C(p; r)| ≤ |S ∩ U+(p; r)|.142

The union U−(p; r) consists of m−(p; r) =
vol[U−(p; r) ∩Rl]

vol[U ]
shifted cells, which

all have the same volume vol[U ∩ Rl]. Since |S ∩ U | = m, we get |S ∩ U−(p; r)| =
vol[U−(p; r) ∩Rl]

vol[U ]
m. Similarly, we count all points of S in the upper union as follows:
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|S ∩ U+(p; r)| = vol[U+(p; r) ∩Rl]

vol[U ]
m. The bounds for |S ∩ C(p; r)| become

vol[U−(p; r) ∩Rl]

vol[U ]
m ≤ |S ∩ C(p; r)| ≤ vol[U+(p; r) ∩Rl]

vol[U ]
m,

which proves the internal inequalities m−(p; r)m ≤ |S ∩ C(p; r)| ≤ m+(p; r)m. Then

vol[U−(p; r) ∩Rl] ≤ vol[U ∩Rl]

m
|S ∩ C(p; r)| ≤ vol[U+(p; r) ∩Rl].

For the width w of the unit cell U , the smaller cylinder C(p; r − w) is completely
contained within the lower union U−(p; r). Indeed, if |q⃗ − p⃗| ≤ r−w, then q ∈ U + v⃗
for some v⃗ ∈ Λ. Then (U + v⃗) is covered by the cylinder C(q;w), hence by C(p; r)
due to the triangle inequality. The inclusion C(p; r−w) ⊂ U−(p; r) implies the lower
bound for the volumes: (r−w)lVl = vol[C(p; r−w)∩Rl] ≤ vol[U−(p; r)∩Rl], where

Vl is the unit ball volume in Rl. Then
(r − w)lVl

vol[U ∩Rl]
≤ vol[U−(p; r) ∩Rl]

vol[U ∩Rl]
= m−(p; r),

which implies the first required inequality in the lemma:

(
r − w

PPC(S)

)l

=
(r − w)lmVl

vol[U ∩Rl]
≤ vol[U−(p; r) ∩Rl]

vol[U ∩Rl]
m = m−(p; r)m.

The last required inequality is proved similarly by using U+(p; r) ⊂ C(p; r + w).143

Proof of Lemma 3.5. Let q ∈ S be a k-th neighbor of p in S. There can be several144

points q ∈ S at the distance |q − p| = dk(S; p) but the argument below works for any145

q. The closed cylinder C(p; r) with r = dk(S; p) contains the k-th neighbor q of p and146

hence has more than k points (including p) from S. The upper bound of Lemma 3.4147

for r = dk(S; p) implies that k < |S ∩ C(p; r)| ≤ (r + w)l

(PPC(S))l
. Taking the l-th roots148

gives l
√
k <

r + w

PPC(S)
, so r = dk(S; p) > PPC(S) l

√
k − w.149

For any radius r such that
√
r2 + h2 < dk(S; p), the closed cylinder C(p; r) con-

tains only points at a maximum distance
√
r2 + h2 from p. Then C(p; r) does not

include the k-th neighbor q of p and hence contains at most k points (including p)
from S. The lower bound of Lemma 3.4 for r <

√
(dk(S; p))2 − h2 implies that

(r − w)l

(PPC(S))l
≤ |S ∩ C(p; r)| ≤ k. Since the inequality

(r − w)l

(PPC(S))l
≤ k holds for the

constant upper bound k and any radius r <
√

(dk(S; p))2 − h2, the same inequality

holds for the radius r =
√

(dk(S; p))2 − h2. Then
r − w

PPC(S)
≤ l

√
k,

r =
√
(dk(S; p))2 − h2 ≤ PPC(S)

l
√
k + w, dk(S; p) ≤

√
(PPC(S)

l
√
k + w)2 + h2.

Example SM3.1 (stronger asymptotic ADAk(S) → 0 as k → +∞ for Zn). The
survey [SM5] describes progress on the generalized Gauss circle problem expressing the
number of points from the cubic lattice Zn within a ball of a radius r as k = Vnr

n −
O(rαn+ε) for any ε > 0, where αn < n−1 for n ≥ 2. The cubic lattice has PPC(Zn) =
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1/ n
√
Vn. Let dk denote the distance from the origin 0 to its k-th neighbor in Zn. Then

k = Vnd
n
k −O(dαn+ε

k ), so dk =
n

√
k +O(dαn+ε

k )

Vn
= PPC(Zn) n

√
k +O(dαn+ε

k ). Then

ADAk(Zn)

PPC(Zn)
=

dk
PPC(Zn)

− n
√
k = n

√
k +O(dαn+ε

k )− n
√
k =

O(dαn+ε
k )

Pn(
n

√
k +O(dαn+ε

k ), n
√
k)

,

where Pn is a homogeneous polynomial of degree n−1, e.g. P2(x, y) = x+y, P3(x, y) =150

x2 + xy + y2. Because the numerator has the power αn < n − 1 of dk = O( n
√
k) for151

n ≥ 2, the final expression and hence ADAk(Zn) have limit 0 as k → +∞.152

Theorem 4.1 will be proved similar to [SM9, Theorem 13] by Lemmas SM3.2,153

SM3.3, SM3.4. Partial cases of Lemmas SM3.2 and SM3.3 appeared for l = n in154

[SM4, Lemma 2] and for Rn in [SM9, Lemma 8], respectively.155

Lemma SM3.2 (common lattice). Let l-periodic point sets S,Q ⊂ Rn have a156

bottleneck distance dB(S,Q) < min{r(S), r(Q)}. Then S,Q have a common lattice Λ157

with a unit cell U such that S = Λ+ (U ∩ S) and Q = Λ+ (U ∩Q).158

Proof of Lemma SM3.2. Choose the origin 0 ∈ Rn at a point of S. Applying159

translations, we can assume that primitive unit cells U(S), U(Q) of the given l-periodic160

sets S,Q have a vertex at the origin 0. Then S = Λ(S) + (U(S) ∩ S) and Q =161

Λ(Q) + (U(Q)∩Q), where Λ(S),Λ(Q) are l-dimensional lattices of S,Q, respectively.162

We are given that every point of Q is dB(S,Q)-close to a point of S, where the163

bottleneck distance dB(S,Q) is strictly less than the packing radius r(Q).164

Assume by contradiction that S,Q have no common lattice. Then there is a
point p ∈ Λ(S) ⊂ S whose all integer multiples kp⃗ ∈ Λ(S) do not belong to Λ(Q) for
k ∈ Z−{0}. Any such multiple kp⃗ ∈ Λ(S) ⊂ S can be translated by a vector of Λ(Q)
to a point t(k) in the unit cell U(Q) so that kp⃗ ≡ t(k) (mod Λ(Q)). Since the cell
U(Q) contains infinitely many points t(k) for k ̸= 0, one can find a pair t(i) ̸= t(j) at
a distance less than δ = r(Q) − dB(S,Q) > 0. For any m ∈ Z, the following points
are equivalent modulo (translations along the vectors of) the lattice Λ(Q).

t(i+m(j − i)) ≡ (i+m(j − i))p⃗ = ip⃗+m(jp⃗− ip⃗) ≡ t(i) +m(t(j)− t(i)).

These points for m ∈ Z lie in a straight line with gaps |t(j)− t(i)| < δ. The open balls165

with the packing radius r(Q) and centers at all points of Q do not overlap. Hence166

all closed balls with the radius dB(S,Q) < r(Q) and the same centers are at least 2δ167

away from each other. Due to |t(j)− t(i)| < δ = r(Q)−dB(S,Q), there is m ∈ Z such168

that t(i) +m(t(j)− t(i)) is outside the union Q+ B̄(0; dB(S,Q)) of all these smaller169

balls. Then t(i)+m(t(j)− t(i)) has a distance more than dB(S,Q) from any point of170

Q. The translations along all vectors of the lattice Λ(Q) preserve the union of balls171

Q+ B̄(0; dB(S,Q)). Then the point (i+m(j − i))p⃗ ∈ Λ(S) ⊂ S, which is equivalent172

to t(i) + m(t(j) − t(i)) modulo Λ(Q), has a distance more than dB(S,Q) from any173

point of Q. This conclusion contradicts the definition of dB(S,Q).174

Lemma SM3.3 (perturbed distances). For some ε > 0, let g : S → Q be a bijec-175

tion between any discrete sets in a space X with a metric dX such that dX(g(p), p) ≤ ε176

for all p ∈ S. Then, for any i ≥ 1, let pi ∈ S, ti ∈ Q be i-th nearest neighbors of points177

p ∈ S, t = g(p) ∈ Q, respectively. Then the distances from the points p, t to their i-th178

neighbors pi, ti in X are 2ε-close to each other, i.e. |dX(p, pi)− dX(t, ti)| ≤ 2ε.179
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Proof of Lemma SM3.3. Shifting the point g(p) back to p, assume that p = g(p)180

is fixed and all other points change their positions by at most 2ε. Assume by contra-181

diction that the distance from p to its new i-th neighbor ti is less than dX(p, pi)− 2ε.182

Then all first new i neighbors t1, . . . , ti ∈ Q of p belong to the open ball with the center183

p and the radius dX(p, pi)− 2ε. Because the bijection g shifted every point t1, . . . , ti184

by at most 2ε, their preimages g−1(t1), . . . , g
−1(ti) belong to the open ball with the185

center p and the radius dX(p, pi). Then the i-th neighbor of p within S is among these186

i preimages, i.e. the distance from p to its i-th nearest neighbor should be strictly187

less than the assumed value dX(p, pi). We similarly get a contradiction by assuming188

that the distance from p to its new i-th neighbor ti is more than dX(p, pi) + 2ε.189

Lemma SM3.4 (perturbed distance vectors). For ε > 0, let g : S → Q be a190

bijection between any discrete sets in a space X with a metric dX so that dX(g(p), p) ≤191

ε for all p ∈ S. Then g changes the vector R⃗(S, p) = (dX(p, p1), . . . , dX(p, pk))192

of the first k minimum distances from any point p ∈ S to its k nearest neighbors193

p1, . . . , pk ∈ S by at most 2ε q
√
k in the distance Lq. So if t1, . . . , tk ∈ Q are k194

nearest neighbors of t = g(p) within Q and R⃗(Q, t) = (dX(t, t1), . . . , dX(t, tk)) is the195

vector of the first k minimum distances from t = g(p) in Q, then the L∞-distance196

|R⃗(S, p)− R⃗(Q, t)|∞ ≤ 2ε q
√
k.197

Proof of Lemma SM3.4. By Lemma SM3.3 every coordinate of R⃗(S, p) changes198

by at most 2ε. Hence the distance Lq(R⃗(S, p), R⃗(Q, t)) ≤
( k∑
i=1

(2ε)q
)1/q

= 2ε q
√
k.199

Proof of Theorem 4.2. The bottleneck distance between the given sets S,Q ⊂ X200

is dB(S,Q) = inf
g:S→Q

sup
p∈S

dX(g(p), p). Then for any δ > 0 there is a bijection g : S → Q201

such that sup
p∈S

dX(g(p), p) ≤ dB(S,Q) + δ. If the given sets S,Q are finite, one can set202

δ = 0. Indeed, there are only finitely many bijections g : S → Q, hence the infimum203

in the definition above is achieved for one of these bijection g.204

(a) For any discrete sets S,Q ⊂ X be with finite subsets M,T of the same205

number m of points, respectively, we use the notations of Definition 3.1. The given206

1-1 perturbation g : S → Q defines the simplest 1-1 flow from the row of any p ∈ M207

in the matrix D(S,M ; k) to the row of g(p) ∈ T in D(Q,T ; k) by setting fii = 1
m208

and fij = 0 for i ̸= j, where i, j = 1, . . . ,m. All rows of D(S,M ; k) that are identical209

to each other are collapsed to a single row, similarly for D(Q,T ; k). By summing up210

weights of all collapsed rows, the above flow induces a flow from all distance vectors211

in PDD(S,M ; k) to all distance vectors in PDD(Q,T ; k).212

Then EMDq(PDD(S,M ; k),PDD(Q,T ; k)) ≤ 1
m

m∑
i=1

Lq(R⃗i(S), R⃗i(Q)), because

EMDq minimizes the cost over all flows in Definition 4.2. The upper bound Lq(R⃗i(S), R⃗i(Q)) ≤
2(ε+ δ) q

√
k from Lemma SM3.4 implies that

EMDq(PDD(S,M ; k),PDD(Q,T ; k)) ≤ 1

m

m∑

i=1

2(ε+ δ)
q
√
k = 2(ε+ δ)

q
√
k,

which holds for any small δ > 0. By taking the limit for δ → 0, we get the required213

upper bound EMDq(PDD(S,M ; k),PDD(Q,T ; k)) ≤ 2ε q
√
k.214

(b) In the l-periodic case by Lemma SM3.2, the given sets S,Q should have a215

common l-dimensional lattice Λ. Any primitive cell U of Λ is a common unit cell216
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of S,Q, i.e. S = Λ + (S ∩ U) and Q = Λ + (Q ∩ U), so PPC(S) = PPC(Q).217

Then all L∞ distances between rows in PDA(S; k),PDA(Q; k) are the same as be-218

tween the corresponding rows in PDD(S; k),PDD(Q; k), see Definition 3.7. Hence219

EMDq(PDA(S; k),PDA(Q; k)) = EMDq(PDD(S; k),PDD(Q; k)) ≤ 2ε q
√
k by (a).220

The remaining inequality follows from the PDA case. Indeed, each element of221

PND(S; k) in a row i and a column j = 1, . . . , k is obtained from the corresponding222

element of PDA(S; k) by dividing by PPC(S) l
√
j ≥ PPC(S). Then each distance223

Lq between corresponding rows in PND(S; k), PND(Q; k) is at least PPC(S) times224

smaller than between the same rows in PDA(S; k), PDA(Q; k). Then225

EMDq(PND(S; k),PND(Q; k)) ≤ EMDq(PDA(S; k),PDA(Q; k))

PPC(S)
≤ 2ε q

√
k

PPC(S)
.226

Proof of Theorem 4.4. Considering PDD(S; k) as a weighted distribution of rows,227

AMD(S; k) is its centroid from [SM3, section 3]. The argument below follows the proof228

of [SM3, Theorem 1] for q = +∞ and similarly works for other invariants in parts229

(b,c). In the notations of Definition 4.1, we use the inequality ||u⃗||q+||v⃗||q|| ≥ ||u⃗+v⃗||q230

for the q-norm ||v⃗||q =
( ∑
i=1

|vi|q
)1/q

of the Minkowski metric Lq as follows:231

EMDq(PDD(S; k),PDD(Q; k)) =

m(S)∑

i=1

m(Q)∑

j=1

fijLq(R⃗i(S), R⃗j(Q)) =232

m(S)∑

i=1

m(Q)∑

j=1

||fij
(
R⃗i(S)− R⃗j(Q)

)
||q ≥ ||

m(S)∑

i=1

m(Q)∑

j=1

fij(R⃗i(S)− R⃗j(Q))||q =233

||
m(S)∑

i=1

(m(Q)∑

j=1

fijR⃗i(S)
)
−

m(Q)∑

j=1

(m(S)∑

i=1

fijR⃗j(Q)
)
||q =234

||
m(S)∑

i=1

wi(S)R⃗i(S)−
m(Q)∑

j=1

wj(Q)R⃗j(Q)||q = Lq(AMD(S; k),AMD(Q; k)).235
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