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This paper was motivated by the articles “Same or different - that is the question”
in CrystEngComm (July 2020) and “Change to the definition of a crystal” in the
IUCr newsletter (June 2021). Experimental approaches to crystal comparisons
require rigorously defined classifications in crystallography and beyond. Since
crystal structures are determined in a rigid form, their strongest equivalence in
practice is rigid motion, which is a composition of translations and rotations in
3-dimensional space. Conventional representations based on reduced cells and
standardizations theoretically distinguish all periodic crystals. However, all cell-
based representations are inherently discontinuous under almost any atomic dis-
placement that can arbitrarily scale up a reduced cell. Hence comparing millions
of known structures in materials databases needs continuous distance metrics.

1. Motivations for new definitions in crystallography

Mathematical crystallography, including the classification of
lattices, unit cells, crystal classes, etc., by symmetries has a
long and rich history. But classical mathematical crystallog-
raphy, grounded largely in group theory, was done before the
computer age and needs updating in our era of massive data.

This paper does not reinvent the wheel but extends the dis-
crete concepts to a new continuous domain in the language of
present-day crystallography for present-day crystallographers.

The entry ”A crystal” appeared in the IUCr Online Dic-
tionary of Crystallography (Authier, 1984) in 1992 and was
since modified slightly. We propose updates to fill the past
gaps and meet present needs. The latest direct-space defini-
tion (Chapuis, 2024a) by the Commission on Crystallographic
Nomenclature (CCN) says that “a solid is a crystal if its atoms,
ions and/or molecules form, on average, a long-range ordered
arrangement. In most crystals, the arrangement is a periodic
array that is governed by the rules of translational symmetry.”

In this paper, a crystal is a periodic crystal, so we post-
pone similar developments for non-periodic materials includ-
ing quasicrystals and amorphous solids to future work, see
(Senechal, 1996). The definition quoted above (Brock, 2021)
for a periodic crystal means that the set of all atoms is pre-
served under all lattice translations. Since periodic crystals, lat-
tices, and unit cells are often confused (Nespolo, 2015) or used
interchangeably, we give rigorous definitions in section 2.

The next step is to clarify which periodic crystals should
be considered the same, in order to reliably compare crystals.
Below we quote the paper “Same or different - that is the ques-
tion” (Sacchi et al., 2020). It is correct scientific practice “to
report measurable quantities with an error” because all real
measurements are noisy. However, if one claims that “... two
dimensions are considered the same if their values fall within

the accepted error or standard deviation”, quoted from sec-
tion 2.1 in (Sacchi et al., 2020), then an axiomatic approach
logically implies that all dimensions (meaning measurements
of unit cell parameters in this case) should be the “same”. This
continuum paradox (Hyde, 2011) says that many small changes
(indistinguishable from 0) can lead to a big overall change.

For any fixed small error ε > 0, if we call any real number
x ∈ R indistinguishable from (considered the same as) all num-
bers within an interval [x − ε, x + ε], then x + ε is the same as
all numbers from [x + ε, x + 2ε], which makes x the same as
any number within [x, x + 2ε], similarly within [x − 2ε, x] if we
replace ε with −ε. Continuing this logical argument further, any
number y becomes indistinguishable from x in ⌈|x− y|/ε⌉ steps,
which is the smallest integer larger than or equal to |x − y|/ε.
This argument is formalized in terms of an equivalence below.

Definition 1 (equivalence relation). A binary relation A ∼
B between objects of any kind is called an equivalence
(Raczkowski & Sadowski, 1990) if these axioms hold:
(1) reflexivity : A ∼ A, so any object A is equivalent to itself;
(2) symmetry : for any objects A,B, if A ∼ B then B ∼ A;
(3) transitivity : for any A,B,C, if A ∼ B and B ∼ C then A ∼ C.

Definition 1 is important because any well-defined classi-
fication into disjoint classes requires an equivalence relation.
Indeed, the equivalence class of any object [A] = {B | B ∼ A}
is the set of all objects B equivalent to A. The transitivity axiom
implies that if the classes of A,C share a common object B, these
classes coincide, i.e. [A] = [C]. Hence Definition 1 guarantees
that all equivalence classes are disjoint. For any fixed ε > 0, the
binary relation x ∼ y defined by |x − y| ≤ ε on real numbers
fails the transitivity axiom because 0 ∼ ε ∼ 2ε but 0 ̸∼ 2ε.

If we enforce the transitivity so that x ∼ z if there is y such
that x ∼ y ∼ z, this transitive extension makes all real num-
bers equivalent by putting them into a single equivalence class.

†

Anosova, Kurlin, and Senechal · The importance of definitions in crystallography 1



international union of crystallography

Equality is an example of equivalence because any number can
be written in many different forms: 0.5 = 1

2 = 50% = 1 : 2.
If the axioms of Definition 1 such as the transitivity are

not satisfied, the resulting classes can become overlapping and
dependent on manually chosen parameters, see (Zwart et al.,
2008). All relations between lattices and crystals that led to 7
crystal systems, 14 Bravais classes, and 230 space-group types
are equivalences satisfying the axioms. A space-group type is a
class of space groups under isomorphism, which is a bijection
respecting the group operation, see (Nespolo et al., 2018).

The most important practical motivation to agree on the main
equivalences between crystals is the ongoing crisis of fake data
in crystallography (Gavezzotti, 2022), which has caught atten-
tion of journalists (Chawla, 2024). Indeed, scientists could stop
the “paper mills” (Bimler, 2022) that publish hundreds of arti-
cles and thousands of crystal structures, many of which are
being investigated for data integrity (Francis, 2023).

In November 2023, two Nature papers described the recent
‘big data’ attempts at generating crystal structures. The first
paper (Merchant et al., 2023) reported the GNoME database
of 384+ thousand ‘stable’ predicted structures. The chemists
found “scant evidence for compounds that fulfill the trifecta of
novelty, credibility, and utility” (Cheetham & Seshadri, 2024).

The autonomous A-lab (Szymanski et al., 2023) claimed
to have synthesized 43 new materials from the GNoME. The
review (Leeman et al., 2024) concluded that “none of the mate-
rials produced by A-lab were new: the large majority were mis-
classified, and a smaller number were correctly identified but
already known”. Section 6 will complement these conclusions
by identifying thousands of duplicates in the GNoME.

2. Common confusions with cells, lattices, and crystals
In our papers (Widdowson et al., 2022) and (Widdowson &
Kurlin, 2022), we introduced a unit cell, lattice, and periodic
crystal in a single definition without explaining their logical
dependencies. This approach suffices for expert mathemati-
cians, but since many publications confuse lattices not only with
crystals but also with cells, we clarify the differences here.

We are grateful to Massimo Nespolo for highlighting the dif-
ferences between a periodic lattice and a crystal structure in
(Nespolo, 2019). Confusing these concepts led to the terms “lat-
tice energy” and “lattice defects”, which should be better called
“structural energy” and “structural defects”. Since section 2 in
(Nespolo, 2019) defined “the lattice of a crystal structure ... as a
collection of vectors expressed as a linear combination of n lin-
early independent vectors”, we start from the more basic con-
cepts of a basis and a lattice without requiring a crystal structure
whose definition needs the pre-requisite concept of a lattice.

Definition 2 (basis and ordered basis). (a) A basis of Rn is an
unordered set of n vectors {v1, . . . , vn} in Rn that are linearly

independent, i.e.,
n∑

i=1
tivi = 0 if and only if t1 = · · · = tn = 0.

(b) An ordered basis of Rn is a basis whose vectors v1, . . . , vn
are ordered. Equivalently, any vector v ∈ Rn can be expressed

as a linear combination
n∑

i=1
tivi for unique t1, . . . , tn ∈ R.

For example, the vectors v1 = (1, 0), v2 = (0, 1) form a basis
of R2 because any vector v = (x, y) ∈ R2 is uniquely written as
the linear combination xv1 + yv2. We can write coordinates of
any vector v ∈ R2 in a unique order only if v1, v2 are ordered.

Following our standards of introducing all concepts with an
equivalence, these definitions imply that two bases are equiva-
lent if they are equal as sets, while two ordered bases are equiv-
alent if they contain the same vectors in the same order. A basis
is often confused with the unit cell defined by this basis.

Definition 3 (the unit cell and lattice defined by a basis). Any
unordered basis {v1, . . . , vn} of Rn defines a unit cell: the par-
allelepiped U(v1, . . . , vn) consisting of all linear combinations

n∑
i=1

tivi with real coefficients t1, . . . , tn ∈ [0, 1). This basis also

generates the lattice Λ(v1, . . . , vn) consisting of all linear com-

binations
n∑

i=1
civi with integer coefficients c1, . . . , cn ∈ Z.

Thus a unit cell is a ”box,” while a lattice is a discrete point
set. Fig. 1 (left) shows that the square cells defined by the
orthonormal bases {v1, v2} and {v1,−v2} are both unit squares,
which differ only by a choice of origin and orientation. The
square lattice has infinitely many bases {Av1,Av2}, where A is
a 2 × 2 matrix with integer coefficients and determinant ±1.

Figure 1
Left: infinitely many cells generate the same square lattice. Right: almost any
perturbation breaks the symmetry and discontinuously scales a primitive cell.

For the unit cell U(v1, . . . , vn), we excluded the values
ti = 1 so that all translations of U(v1, . . . , vn) by vectors
v ∈ Λ(v1, . . . , vn) tile Rn without overlaps. The notation
U(v1, . . . , vn) highlights that a unit cell is defined by a basis
alone. For now, we consider unit cells (and lattices) equivalent
(in the strictest possible sense) if they are equal as sets of points.
The map {bases}→ {unit cells} is not invertible because a cor-
ner of a unit cell should be chosen for an origin. Fixing one of 2n

corners is equivalent to choosing n signs of ordered basis vec-
tors ±v1, . . . ,±vn. So we cannot uniquely identify an ordered
basis from a unit cell without making one of 2n choices.

Definition 3 introduced a unit cell and a lattice by using only
an unordered basis {v1, . . . , vn} of vectors. Without these vec-
tors, we cannot define their linear combinations.

However, as soon as we need to unambiguously express a
point (from a motif below) by using fractional coordinates in
a basis, this basis (v1, . . . , vn) should become ordered so that
coordinates of any point are ordered according to the basis.

2 Anosova, Kurlin, and Senechal · The importance of definitions in crystallography



international union of crystallography

Definition 4 (motif, periodic point set, periodic crystal). For
any ordered basis v1, . . . , vn of Rn, let M ⊂ U(v1, . . . , vn) be a
finite set M of points. We call M a motif. A periodic point set
S = M + Λ(v1, . . . , vn) is the set of points p + v for all p ∈ M
and v ∈ Λ. In R3, if each point of M is an atom or ion with a
chemical element and charge, S can be called a periodic crystal.

In Definition 3, any periodic crystal has a purely geomet-
ric part, which is a periodic set of zero-sized points at all
atomic centers, and the physical part of atomic attributes of
these points, see the history in (Palgrave & Tobin, 2021). Any
lattice Λ can be considered a periodic point set whose motif M
consists of a single point p, for example, at the origin of Rn.
More general periodic crystals, even graphite, have motifs with
at least two points and thus are not lattices by Definition 3.

Any unit cell can be scaled by a positive integer factor along
each basis vector to an extended cell. This additional ambigu-
ity is theoretically resolved by taking a primitive cell that is a
unit cell of a minimal volume. However, Fig. 1 (right) shows
that any extended cell can be made primitive by a tiny perturba-
tion of a single atom in the initial cell. This discontinuity was
reported in 1965, see page 80 in (Lawton & Jacobson, 1965),
and emerges even in dimension 1. For the integer sequence Z,
if we shift m of every m + 1 points by a small ε > 0, we get
the periodic sequence {0, 1 + ε, . . . ,m + ε}+ (m + 1)Z whose
every point is ε-close to a point of Z (and vice versa) but the
period m + 1 can be arbitrarily large after perturbation.

A Crystallographic Information File (CIF) contains an
ordered basis of vectors in v1, v2, v3 ∈ R3 and coordinates of
each point p ∈ M in this basis with the atomic type of p. The
ordered vectors v1, v2, v3 can be uniquely determined from their
lengths |v1|, |v2|, |v3| and angles ∠(v2, v3), ∠(v3, v1), ∠(v1, v2).
The angles should be ordered according to their opposite vec-
tors. A unit cell without ordered sides (ordered basis vectors)
can give rise to different periodic point sets as in Fig. 2.

Figure 2
For any a > b > 0, let the lattices Λ,Λ′ ⊂ R2 have the unit cells U,U ′ of the
rectangular forms a × b, b × a, respectively. Any collection of m ≥ 2 points
with fractional coordinates x ̸= y in [0, 1] defines different motifs M ⊂ U and
M′ ⊂ U ′. Then the periodic point sets S = Λ + M, S′ = Λ′ + M′ can be
arbitrarily different though their CIFs differ only by swapping the lengths a, b.

Ordering basis vectors by their lengths creates another dis-
continuity if the vectors have equal lengths because small per-
turbations can change their order. Fig. 3 summarizes why an
ordered basis of R3 is more convenient for defining a periodic
crystal than a unit cell. When a basis v1, . . . , vn is fixed, we use
the shorter notations U,Λ without repeating this fixed basis.

Figure 3
Due to the ambiguity of Fig. 2, a unit cell U with a motif M ⊂ U can define a

periodic point set only after choosing an ordered basis for U . A periodic point
set is a union of lattices Λ + p shifted by all p ∈ M. A periodic crystal is a
periodic set of atoms (points with chemical elements or other attributes).

3. Rigorous definitions of periodic and crystal structures
In the past, many different equivalence relations between latices
and crystals were studied. One of the simplest is by chemical
composition or by equality of another property such as density.
However, crystals with the same composition (say, diamond and
graphite of pure carbon) or with the same density can have many
different properties, so these equivalences may not suffice.

Hence we are looking for a stronger equivalence that would
guarantee the same physical and chemical properties according
to the structure-property hypothesis saying that a material struc-
ture should determine all its properties (Newnham, 2012).

The IUCr online dictionary (Chapuis, 2024c) contains the
following entry: “crystals are said to be isostructural if they
have the same structure but not necessarily the same cell dimen-
sions nor the same chemical composition, and with a ’com-
parable’ variability in the atomic coordinates to that of the
cell dimensions and chemical composition. For instance, cal-
cite CaCO3, sodium nitrate NaNO3 and iron borate FeBO3 are
isostructural”. This phrase contains a cycle of ‘structural’ con-
cepts (“crystals are isostructural if they have the same struc-
ture”), which should be resolved by defining a structure.

If the keyword “necessarily” was omitted above, the reflexiv-
ity axiom would fail. Any attempt to define a ’comparable’ vari-
ability with a threshold ε > 0 for deviations of cell sizes fails
the transitivity axiom. Indeed, by applying sufficiently many
tiny deformations, we can convert any given unit cell (with an
empty motif as in Definition 3) into any other cell, so the clas-
sification under this “deviation” equivalence becomes trivial.

The IUCr online dictionary defines the longer term crys-
tal structure as “a crystal pattern consisting of atoms”. Both
(Chapuis, 2024b) and section 8.1.4 in (Hahn, 2005) defined a
crystal pattern in different words but essentially as a periodic
point set in Definition 4, not considered under rigid equiva-
lence. The word pattern as in the area of Pattern Recognition
often refers not to a single object but to a class of objects under
an equivalence as we propose in new Definition 6 below.

Why do we need an equivalence that distinguishes between
all chemical compositions and also close polymorphs that have
the same composition but different properties? Such an equiv-
alence is important because in the past many HIV patients
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suffered by unknowingly taking a more stable but less solu-
ble polymorph of ritonavir that was accidentally manufactured
instead of the required from (Morissette et al., 2003).

On another hand, the pointwise coincidence of cells, lattices,
and periodic sets from section 2 is too strict. Indeed, shifting
the whole motif M by a small vector within a fixed unit cell
changes all fractional coordinates of atoms in a CIF but not the
actual solid material. We consider all equivalences and compar-
isons only for ideal periodic crystals and under the same ambi-
ent conditions such as room temperature and pressure.

Since crystal structures are determined in a rigid form, their
strongest and practically important equivalence is rigid motion.

Definition 5 (rigid motion, isometry). A rigid motion of Rn is
a composition of translations and rotations. An isometry of Rn

is any transformation that preserves all inter-point distances.

For an ordered basis v1, . . . , vn of Rn, an orientation can be
defined as the sign of the n × n determinant with the columns
v1, . . . , vn. Any orientation-preserving isometry of Rn is a rigid
motion. Any orientation-reversing isometry of Rn is a composi-
tion of one (any) mirror reflection and a rigid motion.

Hence isometry is a slightly weaker equivalence than rigid
motion because mirror images are equivalent under isometry
but not always under rigid motion. Since mirror images can
be distinguished by a (suitable chosen) sign of orientation, it
almost suffices to distinguish crystals only under isometry.

Definition 5 distinguishes between isometry, which makes
sense for any metric space with no Euclidean structure, and
more restrictive rigid motion (orientation-preserving isometry).

The word motion is justified by the fact that any rigid motion
f , which excludes mirror reflections by definition, can be real-
ized through a continuous (motion) family of isometries ft :
Rn → Rn, where t ∈ [0, 1], f1 = f and f0 : p 7→ p is the
identity map. Isometry was called a symmetry operation in sec-
tion 8.1.3 of (Hahn, 2005). Since symmetry has a wider meaning
in science, we use the more specific concepts of rigid motion
and isometry. The comprehensive books (Engel et al., 2004),
(Zhilinskii, 2016) studied lattices through group actions. In this
language, any periodic structure from Definition 6 is a class in
the quotient of all periodic point sets under the action of the
special Euclidean group SE(Rn) of all rigid motions in Rn.

Definition 6 (periodic and crystal structures). A periodic struc-
ture is an equivalence class of periodic point sets S ⊂ Rn under
rigid motion. A crystal structure is an equivalence class of peri-
odic crystals with atomic attributes under rigid motion in R3.

Section 2 in (Nespolo et al., 2018) defined a crystal structure
as “an idealized periodic pattern of atoms in three-dimensional
space using the corresponding coordinates with respect to the
chosen coordinate system”. This pattern coincides with a crys-
tal pattern (Chapuis, 2024b) from section 8.1.4 of (Hahn, 2005)
and is a single representative of a periodic structure, introduced
as a class of all rigidly equivalent crystals in Definition 6.

Any explicit use of coordinates for a crystal representation as
in a CIF requires choosing an ordered basis and a motif of points
with fractional coordinates in this basis. Definition 4 called such
objects periodic point sets and periodic crystals. Shifting a motif
by a fixed vector changes a description in a CIF but not the real
structure considered as a class of equivalent representations

Then a periodic crystal in the sense of classical cell-based
Definition 4 becomes one of infinitely many coordinate-based
representations of a crystal structure in the sense of new Def-
inition 6. Hence crystals are defined as same if all their atoms
can be matched by rigid motion. If there is no ideal match, any
slightly different structures can be called close rather than “the
same” because any tolerance makes the classification trivial.

Ignoring atomic attributes maps any periodic crystal to a peri-
odic set of points (atomic centers). Though this projection might
seem to lose all chemistry, Richard Feynman gave us a visual
hint in his first lecture on atomic theory in Fig. 4 to compare
crystals only by atomic centers without chemical elements.

Figure 4
Feynman’s first lecture in (Feynman et al., 1971) has a table, (redrawn here
in a simpler form) of 7 cubic crystals that all differ by their periodic struc-
tures (purely geometrically) as in Definition 6 after all chemical elements are
ignored.

Despite the apparent simplicity, Definition 6 brings up a
hard problem of efficiently distinguishing periodic structures,
which will be stated in section 6 defining a few more con-
cepts. A recent and almost complete solution to this problem has
made Definition 6 practically important, especially for detect-
ing thousands of previously unknown near-duplicates in major
databases. Sections 4 and 5 will discuss how to distinguish crys-
tal structures and continuously quantify their differences.

4. Descriptors vs invariants under a given equivalence

Distinguishing objects under any equivalence relation from
Definition 1 necessarily requires the concept of an invariant.
Such a numerical property is often called a feature or descriptor
without specifying an equivalence. In the sequel, for simplicity,
we use isometry as our main equivalence, denoted by S ≃ Q.
Extensions to rigid motion will need a sign of orientation.

Definition 7 (invariant, complete invariant). A function I on
periodic point sets is called an isometry invariant if any isomet-
ric sets S ≃ Q have I(S) = I(Q) or, equivalently if I(S) ̸= I(Q)
then S ̸≃ Q. An invariant I is called complete (injective or sep-
arating) if the converse also holds: if S ̸≃ Q then I(S) ̸= I(Q).

4 Anosova, Kurlin, and Senechal · The importance of definitions in crystallography
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Though it is very tempting to reduce a periodic point set to a
finite subset such as an extended motif, this reduction can lead
only to many non-isometric subsets as in Fig. 5. Hence there is
no simple way to reduce a periodic point set to a single finite
subset. Taking finite clouds around every atom in a motif can
lead to a complete invariant of periodic point sets under isom-
etry (Anosova & Kurlin, 2021) but the continuity under pertur-
bations needs careful justifications (Anosova & Kurlin, 2022).

Figure 5
Any periodic set has many non-isometric subsets within boxes or balls of the
same cut-off radius. If an original basis is forgotten, it can be hard to reconstruct
the initial periodic structure from its arbitrary finite subset.

A simple isometry invariant of a periodic point set S is the
number m of points within a primitive unit cell U of S. This
invariant is weak and cannot distinguish any lattices. A com-
plete (injective or separating) invariant I is the strongest possi-
ble in the sense that I distinguishes all non-isometric sets.

The side-side-side (SSS) theorem from school geometry can
be rephrased in terms of invariants by saying that a complete
invariant of unordered three points under isometry of Rn con-
sists of three inter-point distances up to permutations. If all m
given points are ordered, the m × m matrix of their pairwise
distances is complete under isometry by (Schoenberg, 1935).

The case of unordered points is more practical for molecules
whose many atoms can be indistinguishable as in the benzene
ring. The naive extension of distance matrices to m unordered
points requires m! permutations, which is impractical even for
small m. Hence the important requirement for invariants is their
computability, e.g. in polynomial time of the input size.

The invariance condition is the minimal requirement for a
descriptor to be practically useful. A non-invariant such as the
list of fractional coordinates of all motif points p ∈ M cannot
distinguish between any periodic structures even under trans-
lation because all points of a motif M can be slightly moved
along the same vector within a fixed unit cell without changing
the underlying periodic structure in the sense of Definition 6.

The related concept of an equivariant means a function E(S)
such that any rigid motion f affects E(S) in a way controlled by
f so that E( f (S)) = Tf (E(S), where Tf depends only on f but
not on S. The invariance means that Tf is the identity.

For example, the center of mass of a finite molecule M is
equivariant (rigidly moves together with M). But the center of
mass of a motif M is not equivariant for a periodic point set S
because a translation can push one point p ∈ M through a side

face of a unit cell U , so the new periodic translate of p in the
cell U non-equivariantly changes M and its center of mass.

Any linear combination of given point coordinates is equiv-
ariant under linear transformations, while invariants are much
more restrictive and hence valuable. Equivariants are often used
for representing inter-atomic forces by vectors that should be
rigidly moved with the whole structure. Any collection of forces
(one vector at every atom) can be interpreted as an ordered pair
(initial structures, final structure moved by these forces).

Hence complete invariants suffice to describe not only static
structures but also any dynamics in the space of structures.
Mathematical crystallography developed many approaches to
unambiguously identify a periodic structure under rigid motion,
for example by using theoretically unique reduced cell (Niggli,
1928). Then any periodic structure can have standard settings
in the reduced cell (Parthé et al., 2013). In theory, this conven-
tional representation is complete under rigid motion.

Fig. 1 (right) shows that almost any noise can arbitrarily scale
up any reduced cell. Theorem 15 in (Widdowson et al., 2022)
says that this discontinuity under tiny perturbations holds even
for lattices, which have motifs consisting of only one point.

The discontinuity of cell-based representations allows any-
one to disguise a near-duplicate as a new material by mak-
ing any extended cell primitive due to a slight displacement
of atoms and by replacing some atoms with similar ones. To
stop potential duplicates, we need continuous invariants that
can quantify any (near-)duplicates in terms of a distance met-
ric. The more practically important requirements of continuity
and reconstructability in Fig. 6 will be formalized in section 5.

Figure 6
Non-invariants vs progressively harder requirements for isometry invariants,

which will be all formalized in Problem 10. For periodic crystals, invariants
should be computable in polynomial time of the size of a motif to be useful.

5. Similarities vs distance metrics and continuity
Section 4 justified the importance of invariants for distinguish-
ing periodic structures. This section formalizes the concept of
continuity with respect to a distance metric. We start from the
simplest non-trivial case of 2-dimensional lattices.

(De Lagrange, 1773) classified all lattices Λ ⊂ R2 under
isometry by using the quadratic form Q(x, y) = q11x2+2q12xy+
q22y2, whose coefficients are expressed via a basis v1, v2 of a lat-
tice Λ by the formulae q11 = v1 · v1, q22 = v2 · v2, q12 = v1 · v2.
The extra conditions 0 < q11 ≤ q22 and −q11 ≤ 2q12 ≤ 0
guarantee the uniqueness of the form Q. The corresponding
basis of Λ is called reduced and is unique under isometry of
R2 but not under rigid motion because the bases v1 = (1, 0),
v±2 = (− a

2 ,±b) for 0 < a < 1 < b have the same reduced
form Q(x, y) = x2 − axy + b2y2 and generate the lattices that
are mirror images and not related by rigid motion of R2.

Anosova, Kurlin, and Senechal · The importance of definitions in crystallography 5
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In a more geometric approach, (Selling, 1874) and later
(Delone et al., 1934) added to any basis v1, v2 of R2, the extra
vector v0 = −v1 − v2 and the restriction that all pairwise
angles between these vectors are non-acute, which means 90◦

or more. More recently, (Conway & Sloane, 1992) called such
a collection v0, v1, v2 an obtuse superbase. This name is jus-
tified by the fact that any vector v ∈ R2 can be written as
v = a1v1 + a2v2 for unique a1, a2 ∈ R in a basis v1, v2 and

also as v = b0v0 + b1v1 + b2v2 for unique b0 = −a1 + a2

3
,

b1 =
2a1 − a2

3
, b2 =

2a2 − a1

3
so that b0 + b1 + b2 = 0.

While any lattice in R2 has infinitely many non-isometric
bases, see Fig. 1 (left), its obtuse superbase is unique up to
isometry. Indeed, any non-rectangular lattice Λ ⊂ R2 has only
two opposite superbases ±{v0, v1, v2}, which are related by the
2-fold rotation around 0 ∈ R2, and whose all six vectors are
orthogonal to the boundary of the hexagonal Voronoi domain
V (Λ) = {p ∈ R2 : |p| ≤ |v| for v ∈ Λ− {0}} in Fig. 7 (left),
see (Voronoi, 1908). All obtuse superbases of a rectangular lat-
tice are related by reflections and are not unique under rigid
motion. Fig. 7 (right) shows two obtuse superbases (mirror
images) for v1 = (a, 0), v2 = (0, b), v0 = (−a,−b).

Figure 7
Any lattice Λ ⊂ R2 has an obtuse superbase of basis vectors v1, v2 with

v0 = −v1−v2 and vi ·vj ≤ 0 for distinct i, j ∈ {0, 1, 2}, which is unique under
isometry, but not under rigid motion (for a rectangular lattice on the right).

Definition 8 (root invariant RI(Λ) of a lattice Λ ⊂ R2). Let
a lattice Λ ⊂ R2 have an obtuse superbase v0, v1, v2 so that
v1, v2 generate Λ, v0 + v1 + v2 = 0, and vi · vj ≤ 0 for all dis-
tinct i, j ∈ {0, 1, 2}. Write the root products ri j =

√−vi · vj in
increasing order 0 ≤ r12 ≤ r01 ≤ r02, which might re-order the
vectors v0, v1, v2 without changing Λ. The root invariant is the
ordered triple RI(Λ) = (r12, r01, r02), where only r12 can be 0.

Theorem 4.2 in (Kurlin, 2022b) proved that RI(Λ) is a com-
plete invariant of all lattices Λ ⊂ R2 under isometry, also under
rigid motion after enriching RI(Λ) with a sign of orientation.
The key advantage of RI(Λ) in comparison with a reduced basis
is the continuity under perturbations. In (Kurlin, 2022b), Fig. 4
explains the discontinuity of reduced bases, while Theorems 7.5
and 7.7 prove the bi-continuity of the root invariant RI(Λ).

Fig. 8 visualizes the continuous space of all 2-dimensional
lattices under isometry composed (for simplicity) with uniform
scaling, which maps each root product to r̄i j =

ri j

r12 + r01 + r02
.

Since r̄12+r̄01+r̄02 = 1, we can use only two independent coor-
dinates x = r̄02 − r̄01 and y = 3r̄12, which define the quotient

triangle QT = {x + y ≤ 1, x ∈ [0, 1), y ∈ [0, 1]}. Any rect-
angular lattice Λ(a, b) with an obtuse superbase v1 = (a, 0),
v2 = (0, b), v0 = (−a,−b) for a ≤ b has RI(a, b) = (0, a, b)
and (x, y) = ( b−a

b+a , 0). All square lattices with a = b are repre-
sented by the origin (x, y) = (0, 0). The point (1, 0) is excluded
as a limit case of lattices with infinitely thin and long cells.

Figure 8
For each crystal in the CSD with a given basis v1, v2, v3, we took three lattices
generated by the bases (v1, v2), (v2, v3), (v3, v1). The resulting 2.6+ million 2D
lattices populate a triangle continuously expanding the tree of Bravais classes.
The color indicates a logarithmically scaled number of lattices whose invariants
are close to (x, y), see the earlier version in Fig. 9 of (Bright et al., 2023b).

In summary, all classes of 2-dimensional lattices under isom-
etry and uniform scaling are in a 1-1 bi-continuous correspon-
dence with all points in the quotient triangle QT. The Bravais
classes of square and hexagonal lattices are the points (0, 0)
and (0, 1), respectively. The Bravais class of centered rectangu-
lar lattices consists of two boundary edges (without endpoints):
the hypotenuse x + y = 1 and vertical side x = 0, y ∈ (0, 1).

Any continuous path in QT is realized as a continuous defor-
mation of lattices. For example, the unit square lattice Λ0 with
the obtuse superbase (3, 0), (0, 3), (−3,−3), and RI(Λ0) =
(0, 3, 3) can be continuously deformed into the hexagonal lat-
tice Λ1 with the obtuse superbase (2

√
2, 0), (−

√
2,±

√
6), and

RI(Λ1) = (2, 2, 2) along the vertical side x = 0, y ∈ (0, 1)
through the lattices Λy with RI(Λy) = (2y, 3 − y, 3 − y) and
the bases v1 = (l, 0) and v2 = (−4y2/l,

√
l2 − 16y4/l2), where

l =
√

5y2 − 6y + 9, and y continuously moves from 0 to 1.
Fig. 8 contrasts the discrete tree of five Bravais classes of 2-

dimensional lattices with the continuous map on the quotient tri-
angle QT. Although every orthorhombic crystal from the CSD
is represented by three rectangular lattices (on three pairs of
reduced basis vectors), about 45% of all resulting lattices are
oblique and continuously fill the interior of QT apart from the
sparse corner close to (1, 0), where lattices have very thin and
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long primitive unit cell. All non-generic lattices occupy lower-
dimensional subspaces in the continuous space of lattices.

One can define many continuous distances between points in
the quotient triangle QT in Fig. 8, hence between classes of 2D
lattices under isometry and uniform scaling. In (Kurlin, 2022b),
section 5 gave closed-form expressions for metrics between root
invariants and section 6 quantified deviations from symmetry by
continuous chiral distances, see (Bright et al., 2023a).

Any lattice in R3 has an obtuse superbase, which is unique
under isometry only for generic lattices whose Voronoi domain
is a truncated octahedron. Lemmas 4.1-4.5 in (Kurlin, 2022a)
explicitly described all non-isometric obtuse superbases for the
five Voronoi types of 3-dimensional lattices. These results led
to a complete root invariant of lattices under isometry in R3

in (Kurlin, 2022a). The root invariant of a 3D lattice requires
complicated continuous distances satisfying the metric axioms
in Definition 9 below and will appear in a forthcoming work.

The even more general case of periodic point sets needs a
metric satisfying the axioms below. This metric is a distance
between two objects, not a numerical property of a single object.

Definition 9 (distance metric). For any objects under an equiv-
alence relation A ∼ B from Definition 1, a distance metric
d(A,B) is a function satisfying these axioms:

(1) coincidence: d(A,B) = 0 if and only if A ∼ B;

(2) symmetry: d(A,B) = d(B,A) for any objects A,B;

(3) △ inequality: d(A,B) + d(B,C) ≥ d(A,C) for any A,B,C.

The positivity property d(A,B) ≥ 0 follows the axioms
above. A metric is needed to formalize the continuity of invari-
ants in Problem 10 below. While classical crystallography the-
oretically achieved the completeness of cell-based invariants,
Problem 10 asks for more practically important invariants that
have no discontinuities at boundaries of 230 (or any other num-
ber of) classes in the fully connected crystal universe.

Problem 10 (isometry classification of periodic structures).
Find a function I on all periodic point sets S ⊂ Rn satisfying
the following practically important conditions:

(a) invariance : if S ≃ Q are isometric, then I(S) = I(Q);

(b) completeness : if I(S) = I(Q), then S ≃ Q are isometric;

(c) continuity : there is a metric d satisfying the axioms of Def-
inition 9 under isometry and the ε− δ continuity below: for any
ε > 0 and a periodic point set S, there exist C and δ > 0 such
that if Q is obtained by perturbing any point of S up to δ in
Euclidean distance, then d(I(S), I(Q)) ≤ Cε;

(d) reconstructability : any periodic point set S ⊂ Rn can be
reconstructed (uniquely up to isometry) from its invariant I(S);

(e) computability : the invariant I, metric d, and reconstruction
of S ⊂ Rn can be obtained in polynomial time of the motif size
from a suitably reduced basis of S and motif points in this basis.

Due to the coincidence axiom of a metric in Definition 9, the
equality I(S) = I(Q) in the completeness 10(b) is best checked
as d(I(S), I(Q)) = 0. If computability 10(e) is missed, one

impractical invariant I(S) satisfying all other conditions can be
defined as the isometry class of all (infinitely many) periodic
point sets isometric to S. We assume that a periodic point set
S is given with a reduced basis such as Niggli’s basis in R3 or
Minkowski basis in a higher dimension n since lattice reduc-
tions can be slow for n > 3, see (Nguyen & Stehlé, 2009).

The ε−δ continuity in condition 10(c) is a classical but weak
version of continuity. The stronger Lipschitz continuity says that
C and δ are independent of S and ε, so if Q is ε-close to S, then
d(I(S), I(Q)) ≤ Cε, where a constant δ was absorbed by Cε.

For 2D lattices Λ, Theorem 7.5 in (Kurlin, 2022b) proved the
intermediate Hölder continuity saying that if the coordinates of
the basis vectors of Λ are perturbed up to ε, the root invariant
RI(Λ) changes up to

√
6lε in the Euclidean metric, where l is

the maximum length of given basis vectors of Λ.

The stronger Lipschitz continuity (without the factor
√

l)
seems unrealistic for lattices because the rectangular lattices
with the ε-close bases (l, 0), (0, ε) and (l, 0), (0, 2ε) can sub-
stantially differ even by unit cell areas lε and 2lε whose differ-
ence lε can be arbitrarily large if l has no upper bound.

Fig. 9 visualizes the advantages of invariants that satisfy all
the conditions of Problem 10. In the past, incomplete, discon-
tinuous or non-invariant descriptors mapped periodic crystals to
latent spaces (image spaces of descriptor functions).

Figure 9
To explain the structure-property relations, a crystal structure S with infinitely
many representations under isometry should be bijectively mapped by a com-
plete and continuous invariant I to the space of invariants so that any image I(S)
can be efficiently inverted back to a representative crystal S ⊂ R3.

The non-invariance (existence of false negatives) means that
the same crystal structure maps to different points, which
makes the problem of distinguishing structures even harder.
The incompleteness (existence of false positives) means that
non-isometric structures map to the same point, which leaves
no chance to reconstruct a correct crystal. The discontinuity
under tiny atomic displacements means that near-duplicates can
appear very distant in the latent space.

All the conditions of Problem 10 guarantee that a required
invariant I is a bijective and continuous map from the space of
crystal structures to the space of invariant values. The inverse
map I−1 reconstructs any periodic point set S from I(S).

6. Conclusions: the practical importance of definitions

This section summarizes the progress in developing invariants
that satisfy the conditions of Problem 10. The root invariant
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from Definition 8 satisfies all conditions of Problem 10 for all
2-dimensional lattices even with the stronger Hölder continuity
(instead of the weaker ε − δ continuity) under rigid motion,
which is stronger than isometry. For 3-dimensional lattices,
(Kurlin, 2022a) defined a complete isometry invariant whose
continuity under perturbations is being finalized.

The past approaches defined metrics between lattices that
allowed only slow or approximate computations. Some of these
theoretical metrics were proved to be continuous for isometry
classes of lattices in any dimension (Mosca & Kurlin, 2020).

In (Widdowson & Kurlin, 2022) for arbitrary periodic point
sets S in Rn, Definition 3.3 defined the Pointwise Distance Dis-
tribution PDD(S; k), where k is the number of neighbors taken
into account for any point in a motif. Theorem 4.3 proved the
Lipschitz continuity saying that perturbing any atom up to ε
changes PDD(S; k) only up to 2ε in a suitable metric. Theorem
4.4 proved that PDD(S; k) is generically complete in the sense
that almost any periodic structure S ⊂ Rn (outside singular sub-
spaces of measure 0) can be reconstructed from a lattice of S
and PDD(S; k) with an explicit upper bound on k depending on
a given unit cell and motif of S. Hence PDD can be considered
a DNA-style code that uniquely identifies almost any real peri-
odic crystal. PDD is stronger for periodic crystals than DNA,
which allows identical twins (about 0.3% among humans) with
indistinguishable DNAs, see (Osterman et al., 2022).

In practice, PDD(S; 100) distinguished all (more than 660
thousand) different periodic crystals in the Cambridge Struc-
tural Database (CSD) through more than 200 billion pairwise
comparisons, which were completed within two days on a mod-
est desktop. Section 6 in (Widdowson & Kurlin, 2022) lists
several pairs that turned out to be near-duplicate CIFs, where
all numbers (unit cell parameters and fractional coordinates)
were identical almost to the last decimal place but one atom
was replaced with a different one, e.g. Cd with Mn in the pair
JEPLIA vs HIFCAB. The integrity office of the Cambridge
Crystallographic Data Centre and all other crystallographers
who looked at these previously unknown near-duplicates agreed
that such an atomic replacement should more substantially per-
turb the geometry of atomic centers, so five journals are inves-
tigating the data integrity of the underlying publications.

A forthcoming paper will extend PDD invariants to distin-
guish all known pairs of homometric crystals that (by definition)
have the same (infinite) list of all interatomic distances. We con-
jecture that the extended invariants are theoretically complete
for all periodic point sets under isometry in any Euclidean Rn.

The comparisons above use only geometry of atomic cen-
ters without chemical elements. After excluding the unrealistic
duplicates found in the CSD, the PDD invariants mapped all
non-isometric crystal structures to non-isometric periodic struc-
tures, where each atom is replaced with a zero-sized point.

Since this map is injective, the more important conclusion
is the Crystal Isometry Principle (CRISP) saying that any real
periodic structure has a unique location in a common Crystal
Isometry Space of all periodic structures (isometry classes of
periodic point sets) independent of symmetry, see Fig. 10.

Hence, in principle, all atomic types in a real periodic crys-
tal can be reconstructed from a sufficiently precise geometry
of their atomic centers. The Eureka moment for this insight
happened in May 2021 when the second author was reading
Richard Feynman’s first lecture “Atoms and motion”, see Fig. 4
with the table of seven cubic crystals whose chemistry can be
reconstructed from the only geometric parameter d (smallest
inter-atomic distance) known to two decimal places.

Figure 10
The Crystal Isometry Principle says that all atomic types in real periodic crys-
tals can be reconstructed from the geometry of atomic centers given with
enough precision, first stated in section 6 of (Widdowson et al., 2022) and
inspired by Feynman’s hint in Fig. 4, see Fig. 1-7 in (Feynman et al., 1971).

The Crystal Isometry Principle does not claim that any peri-
odic point set gives rise to a real periodic crystal because inter-
atomic distances cannot be arbitrary. However, any newly dis-
covered periodic crystal will appear in the same continuous
universe, where all known crystals are already visible. Fig. 8
showed a map of 2-dimensional lattices under isometry and uni-
form scaling. Continuous maps of the CSD and other databases
in invariant coordinates were presented at the IUCr congress,
see (Kurlin, 2023), and will be discussed in future work.

While the realizability of root invariants by lattices in dimen-
sion 2 and 3 has been established in (Kurlin, 2022b) and
(Kurlin, 2022a), we keep working on the harder problem of
realizability of PDD invariants. The implemented application
of PDD is the ultra-fast detection of (near-)duplicates in struc-
tural databases. Final sections in (Widdowson et al., 2022) and
(Widdowson & Kurlin, 2022) reported over a dozen such pairs
in the CSD. Another forthcoming work will report less obvi-
ous (near-)duplicates in the CSD and many more duplicates in
the Crystallography Open Database (COD), Inorganic Crystal
Structure Database (ICSD), Materials Project, and others.

The most important practical impact of CRISP is the scien-
tific barrier for “paper mills” and “duplicate generators” that can
output thousands and even millions of ‘predicted’ and some-
times ‘synthesized’ materials by disguising known structures as
new by tiny perturbations of cell parameters and atomic coor-
dinates (structure factors or other experimental data if needed)
to scale up a primitive cell, and finally by changing some non-
standard chemical elements to their suitable neighbors in the
periodic table. Google’s example below shows that even big
numbers cannot mask (near-)duplicates that we can filter out
by numbers in given CIFs even before computing invariants.
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The paper finishes by describing embarrassing coincidences
in Google’s GNoME database of 384,398 ‘stable’ structures
in (Google, 2023) predicted by expensive DFT optimization
(Mardirossian & Head-Gordon, 2017). The following crystal
bug test can substantially reduce further invariant computations
for such a large database. Ordering all CIFs by the unit cell vol-
ume detected many thousand pairs of CIFs in the GNoME that
have identical volumes to all (eight) decimal places (digits).

Other colleagues found some duplicates after ordering all
CIFs by file sizes in bytes but filtering by the unit cell volume is
more justified. Further filtering by six parameters (three lengths
and three angles) of a unit cell found 30+ thousand CIFs with
identical unit cells, again with all given digits.

Table 1
Coincidences across all CIFs in the GNoME database of 384,398 publicly
available CIFs (Google, 2023). The first column shows the sizes of the found
groups whose CIFs are (near-)duplicates. Columns 2,3,4,5 count fully identical
(symbol-by-symbol) CIFs, the CIFs whose all numbers (unit cell parameters
and fractional coordinates) coincide with all digits (at least 6), then CIFs whose
all numbers coincide up to 4 and 2 digits, respectively. The last row counts the
total number of the involved CIFs. The largest groups are listed in Table 2.
group size
= #CIFs

groups of
identical CIFs

all numbers
coincide

rounding
to 4 digits

rounding
to 2 digits

10 0 0 0 1
9 0 1 1 0
7 0 1 1 2
6 0 2 2 4
5 0 2 3 18
4 1 8 12 92
3 43 72 96 670
2 1,089 1,481 1,932 7,856

all CIFs 2,311 3,248 4,243 18,228

Table 1 summarizes more hard-to-explain coincidences. The
CIFs with GNoME’s ids 4135ff7bc7, 6370e8cf86, c6afea2d8e,
e1ea534c2c are identical texts (symbol-by-symbol). The sup-
plementary materials (available by request) contain an Excel
table listing more than a thousand pairs of identical CIFs. If
chemical elements are ignored, the GNoME has 1,481 pairs
of CIFs with all equal numbers (unit cell parameters and frac-
tional coordinates). If we round all numbers to 4 and 2 decimal
places for the precision of 10−4Å and 10−2Å, respectively, the
last two columns in Table 1 show many more groups of CIFs
that become numerically identical to each other. Table 2 shows
chemical compositions for the three largest groups of CIFs.

The first part of Table 2 says that the GNoME contains a
group of 9 CIFs, where all numbers are equal (with all decimal
places) but chemical compositions differ by one or two atoms.
For example, Dy, Y, Ho, and Tb are often swapped. If all num-
bers are rounded to two digits, one more CIF (a18d30a9fc) joins
the group of duplicates, where Ru is replaced with Re. So com-
parisons by unit cell parameters and fractional coordinates can
help to filter out obvious (near-)duplicates even in big data.

In conclusion, this paper clarified the concept of a periodic
crystal in terms of an ordered basis whose re-ordering creates
ambiguity or discontinuity in Fig. 2. Definitions 2, 3, and 4 are

visually summarized in Fig. 3. Rigid motion (or slightly weaker
isometry) is motivated as the strongest equivalence between
crystals whose structures are determined in a rigid form. The
practical importance of distinguishing near-duplicates in major
structural databases requires us to define a periodic (crystal)
structure as an equivalence class under rigid motion. Any devia-
tions from an ideal rigid matching should be continuously quan-
tified in terms of a distance metric satisfying all axioms and at
least the classical ε− δ form of continuity.

Table 2
The largest groups of (near-)duplicates from Table 1 in the GNoME database.

GNoME id chemical formula
all numbers in
CIFs coincide

numbers coincide
up to 2 digits

082738d51d Dy1Y6Ho13Cd6Ru2 in a group of 9 in a group of 10
1fba8c028f Dy2Y4Ho14Cd6Ru2 9 10
39fe92e2ee Tb2Y4Ho14Cd6Ru2 9 10
6d47ae3d9f Tb3Y3Ho14Cd6Ru2 9 10
703ed1d823 Tb6Ho14Cd6Ru2 9 10
78fcd9d814 Tb1Y5Ho14Cd6Ru2 9 10
976f8cb279 Y6Ho14Cd6Ru2 9 10
a30e9d8c9b Tb5Y1Ho14Cd6Ru2 9 10
b8c0e953e2 Tb4Y2Ho14Cd6Ru2 9 10
a18d30a9fc Tb6Ho14Cd6Re2 in a group of 1 10

06eb60e958 Li2Tb2Ho4Hg8 in a group of 7 in a group of 7
9762be0ec6 Li2Tb2Dy4Hg8 7 7
ab336b54ee Li2Tb2Er4Hg8 7 7
aed8780f34 Na2Tb2Lu4Hg8 7 7
c2236e05de Na2Tb2Dy4Hg8 7 7
ca1d14568f Na2Tb2Tm4Hg8 7 7
d9eab4539b Li2Tb2Y4Hg8 7 7

02c4cb55a6 Tb5Dy15Cd6Ru2 in a group of 6 in a group of 7
0affe9c149 Tb2Dy18Cd6Ru2 6 7
100cfdfdef Tb3Dy17Cd6Ru2 6 7
877c190805 Tb4Dy16Cd6Ru2 6 7
9ce48821cb Dy20Cd6Ru2 6 7
b9e4b78276 Tb1Dy19Cd6Ru2 6 7
cf7af6f79f Dy9Y6Ho5Cd6Ru2 in a group of 1 7

As a visual summary, Fig. 6 highlights the importance of
invariants vs non-invariant descriptors. Fig. 5 explains that sim-
ilarities based on single (hence non-invariant) finite subsets are
hard to justify for periodic structures. In the past, crystallogra-
phy developed conventional representations based on reduced
that can be considered complete isometry invariants in theory.

Now the computational resources are used for generating
millions of structures many of which turn out to be near-
duplicates. Problem 10 has become the important scientific
barrier for paper ‘milling’ by validating any newly discov-
ered crystals vs all known ones. The Crystal Isometry Prin-
ciple and underlying invariants were used for mapping the
CSD (Widdowson & Kurlin, 2024), property predictions in
(Ropers et al., 2022; Balasingham et al., 2024a; Balasingham
et al., 2024b) and presented at the IUCr congresses 2021 and
2023, the European Crystallographic Meeting 2022, the BCA
annual meetings 2022-2024, MACSMIN 2021-2023 (Mathe-
matics and Computer Science for Materials Innovation).

The second author thanks Matt McDermott for a comprehen-
sive tour of the A-lab in Berkeley, where 43 materials were
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