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Abstract

The fundamental model of any periodic crystal is a periodic set of points at all atomic

centres. Since crystal structures are determined in a rigid form, their strongest equiv-

alence is rigid motion (composition of translations and rotations) or isometry (also

including reflections). The recent isometry classification of periodic point sets used a

complete invariant isoset whose size essentially depends on the bridge length, defined

as the minimum ‘jump’ that suffices to connect any points in the given periodic set.

We propose a practical algorithm to compute the bridge length of any periodic point

set given by a motif of points in a periodically translated unit cell. The algorithm

has been tested on a large crystal dataset and is required for an efficient continuous

classification of all periodic crystals. The exact computation of the bridge length is a

key step to realising the inverse design of materials from new invariant values.

1. Introduction: practical motivations and the problem statement

All solid crystalline materials can be modelled at the atomic level as periodic sets of

points (with the chemical attributes if desired) at all atomic centres, defined below.
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Definition 1 (lattice, unit cell, motif, periodic point set). Any vectors v1, . . . ,vn that

form a linear basis of Rn generate the lattice Λ = {
n∑

i=1
civi | ci ∈ Z} and the unit cell

U = {
n∑

i=1
tivi | 0 ≤ ti < 1}. For any finite set of points M ⊂ U (called a motif), the

periodic point set S = Λ +M = {v + p | v ∈ Λ, p ∈ M} is a union of finitely many

lattices whose origins are shifted to all points of the motif M , see Fig. 1 (left).

Fig. 1. Left: the orthonormal basis v1, v2 generates the green lattice Λ and the unit cell
U containing the blue motif M of three points. The periodic point set S = Λ+M is
obtained by periodically repeating M along all vectors of Λ. Right: different motifs
M,M ′ in the same cell generate periodic sets that differ by only translation.

Any unit cell U is a parallelepiped on basis vectors v1, . . . ,vn. If we translate the

unit cell U by all vectors v ∈ Λ, the resulting cells tile Rn without overlaps. Motif

points represent atomic centres in a real crystal. The same lattice can be generated

by infinitely many different bases that are all related under multiplication by n × n

matrices with integer elements and determinant 1. Even if we fix a basis of Rn and

hence a unit cell U , different motifs in U can define periodic point sets that differ only

by Euclidean isometry defined as any distance-preserving transformation of Rn.

Since crystal structures are determined in a rigid form, their slightly stronger equiva-

lence is rigid motion defined as any orientation-preserving isometry without reflections

or as a composition of translations and rotations. After many years of discussing def-

initions of a “crystal” (Brock, 2021), a crystal structure was recently defined in the

periodic case by (Anosova et al., 2024) as a rigid class of all periodic sets of atoms.
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This rigid class consists of all (infinitely many) periodic point sets that are equiva-

lent to each other under some rigid motions. Though two mirror images of a crystal

belong to the same isometry class, they can be distinguished by a suitably defined sign

of crystal orientation, which makes a classification of periodic crystals under isome-

try practically sufficient. However, almost any perturbation of atoms discontinuously

changes some inter-atomic distances and hence the isometry class with all cell-based

descriptors such as symmetry groups. Even in dimension 1, for any integer m > 0 and

small ϵ > 0 all integers of the sequence Z with period 1 are ϵ-pointwise close to the

sequence with the motif M = {0, 1+ ϵ, . . . ,m+ ϵ} and arbitrarily large period m+1.

This inherent discontinuity of all cell-based descriptors was resolved by Point-

wise Distance Distributions (PDD) in (Widdowson & Kurlin, 2022), which defined

geographic-style coordinates on the first continuous projections of the Cambridge

Structural Database (CSD) in (Widdowson & Kurlin, 2024). Though PDDs distin-

guish all periodic crystals in the CSD within an hour on a modest desktop, the only

theoretically complete and continuous invariant descriptor that uniquely identifies any

periodic point set under isometry in Rn is the isoset from (Anosova & Kurlin, 2021).

This isoset invariant requires the bridge length whose definition is reminded below.

Definition 2 (bridge length β(S)). For any finite or periodic set of points S ⊂ Rn,

the bridge length β(S) is the minimum distance such that any points p, q ∈ S can be

connected by a finite sequence of points p = p1, p2, . . . , pk = q in S, such that every

Euclidean distance |pi − pi+1| ≤ β(S) for all i = 1, . . . , k − 1.

Equivalently, the bridge length is the minimum double radius such that the union

of the closed balls of the radius 1
2β(S) around all points of S is connected. The lattice

S = Zn of all points with integer coordinates has β(S) = 1. If we add to Z3 all points

whose coordinates are half-integer, the resulting BCC (body-centred cubic) lattice has

β(S) =
√
3
2 (half-diagonal of the unit cube). The bridge length β also makes sense for
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any finite set S, e.g. S coincides with a motif M . Now we state the main problem.

Problem 3. Design an algorithm to compute the bridge length in polynomial time in

the motif size of any periodic point set S with a fixed unit cell in Rn.

For any finite set M of points in Rn, a Minimum Spanning Tree MST(M) is a

tree that has the vertex set M and a minimum total length of straight-line edges

measured by Euclidean distance. By Definition 2 the bridge length β(M) of any finite

set M ⊂ Rn of points equals the length of the longest edge of MST(M).

Fig. 2. All Minimum Spanning Trees on extended motifs of a periodic point set S have
the longest edge (in blue) of length 3, which could be made arbitrarily long, relative
to a preserved minimum inter-point distance of 1 and bridge length β(S) = 2 due
to shorter edges from the top right point in every cell across a cell boundary.

For any periodic point set S with a unit cell U on a basis v1, . . . ,vn in Rn, one can

consider the extended motifs Mk = S ∩ Uk, where the extended cell Uk is defined by

the basis kv1, . . . , kvn for any integer k > 1. The Minimum Spanning Trees provide the

upper bounds β(S) ≤ β(Mk) for k > 1, which can be unnecessarily high, see Fig. 2,

so Problem 3 is much harder for periodic sets than for finite sets of points.

Definition 4 (parameters r(U), R(S), and a(U)). For any periodic point set S ⊂ Rn,

(Anosova & Kurlin, 2022)[Lemma 3.7] provided another upper bound β(S) ≤ r(U) =
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max{b, d2}, where b = max
i=1,...,n

|vi| is the maximum edge-length of a unit cell U of S with

a basis v1, . . . ,vn, and d is the length of the longest diagonal of U . The upper bound

r(U) can be improved to the covering radius R(S) defined as the smallest radius such

that the union of closed balls of the radius R(S) around all points of S covers Rn.

For any unit cell U ⊂ Rn, let h(U) be the shortest height of U , which can be

computed as h = vol(U)/ max
1≤i<j≤n

|vi×vj |. Define the aspect ratio a(U) = r(U)/h(U).

Main Theorem 5 below guarantees an exact computation of the bridge length β(S)

in a time that only quadratically depends on the motif size m of a periodic set S.

Theorem 5. For any periodic point set S ⊂ Rn with a motif of m points in a unit

cell U , the bridge length β(S) can be computed in time O(m2a(U)nN), where N is the

time complexity of the Smith Normal Form, a(U) is the aspect ratio from Definition 4.

2. Auxiliary concepts for the bridge length algorithm

This section introduces a few auxiliary structures to describe the exact algorithm for

the bridge length in section 3 and to prove main Theorem 5 in section 4.

Definition 6 (periodic graph). Let S ⊂ Rn be a periodic point set with a lattice Λ.

A periodic graph G ⊂ Rn is an infinite graph with the vertex set S and straight-line

edges such that the translation by any vector v ∈ Λ defines a self-isomorphism of G,

which is a bijection S → S that also induces a bijection on the edges of G, see Fig. 3.

If straight-line edges meet at interior points, they are not considered vertices of G.
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Fig. 3. The periodic graph G ⊂ R2 on a periodic point set S has the labelled quotient
graph Q with translational vectors on directed edges, see Definitions 6, 7, 8.

Fig. 3 shows a connected periodic graph G but G can also be disconnected. For

example, let S be the square lattice Z2, then the graph G consisting of all horizontal

edges connecting the points (m,n) and (m + 1, n) for m,n ∈ Z is periodic but not

connected. If we add to G all vertical edges connecting (m,n) and (m,n + 1) for

m,n ∈ Z, the resulting infinite square grid is a connected periodic graph on Z2.

Definition 7 (quotient graph). Let G be a periodic graph on a periodic point set

S with a lattice Λ in Rn. Two points of S (also vertices or edges of G) are called

Λ-equivalent if they are related by a translation along a vector v ∈ Λ. The quotient

graph G/Λ is an abstract undirected graph obtained as the quotient of G under the

Λ-equivalence. Then G is called a lifted graph of G/Λ. Any vertex of G/Λ is a Λ-

equivalence class p+Λ represented by a point p ∈ S. Any edge e of the quotient graph

G/Λ is a Λ-equivalence class [p, q] + Λ represented by a straight-line edge [p, q] of G.

We define the length of any edge e in G/Λ as the Euclidean distance |p− q|.

The quotient graph G/Λ can have multiple edges between the same pair of vertices

as shown in Fig. 3, which all can be distinguished by the labels defined below.

Definition 8 (labelled quotient graph). Let S ⊂ Rn be a periodic point set with a

lattice Λ defined by a basis v1, . . . ,vn. Let G be a periodic graph on S. For an edge

e of the quotient graph G/Λ, choose any of two directions and a representative edge

IUCr macros version 2.1.10: 2016/01/28



7

[p, q] in the lifted graph G. Let U(p), U(q) be the unit cells containing p, q, respectively.

There is a unique vector v =
n∑

i=1
civi ∈ Λ such that U(q) = U(p) + v and ci ∈ Z.

A labelled quotient graph (LQG) is G/Λ whose every edge e has a direction (say,

from the Λ-equivalence class of p to Λ-equivalence class of q) and the translational

vector v(e) = (c1, . . . , cn) ∈ Zn, see Fig. 3. Changing the direction of e multiplies

each coordinate of v(e) by (−1). An equivalence of LQGs is a composition of a graph

isomorphism and changes in edge directions that match all translational vectors.

In crystallography, labelled quotient graphs have been studied by many authors.

Section 6 in (Chung et al., 1984) generated 3-periodic nets by considering used LQGs

whose translational vectors have coordinates {−1, 0, 1}. Section 2 in (Cohen &Megiddo,

1990) described an algorithm to find connected components of a fixed periodic graph

in terms of its LQG. Proposition 5.1 in (Eon, 2011) showed how to reconstruct a

periodic graph up to translations from LQG and a lattice basis, which we also prove

in Lemma 9 in our notations for completeness. Section 3 in (Eon, 2016a) described

surgeries on building units of LQGs. Theorem 6.1 in (Eon, 2016b) characterised 3-

connected minimal periodic graphs. (McColm, 2024) initiated a search for systematic

periodic graphs realisable by real crystal nets, see also (Edelsbrunner & Heiss, 2024).

The quotient graph G/Λ in Fig. 3 has two vertices p, q. If we orient the three edges

of G/Λ from p to q, the translational vector (0, 0) of the blue edge in G/Λ means that

the corresponding straight-line blue edge in the lifted graph G connects points of S

within the same unit cell U with a basis v1,v2. The orange edge with the translational

vector (1, 1) means that each of its infinitely many liftings in G joins a point in a cell

U to another point in the cell U + v1 + v2.

Lemma 9 (lifting). Let G be a periodic graph on a periodic point set S with a motif

M in a unit cell U defined by a basis v1, . . . ,vn in Rn. Let Q be a labelled quotient

graph of G. Then G can be reconstructed from only Q, the basis v1, . . . ,vn, and a
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bijection between all vertices of Q and all points of the motif M ⊂ U .

Proof. The basis v1, . . . ,vn is needed to define a unit cell U with the given points of

M , which are in 1-1 correspondence with all vertices of Q. The full periodic point set

S, which is the vertex set of the periodic graph G, is obtained from M by translations

along the vectors
n∑

i=1
civi for all ci ∈ Z. By Definitions 7 and 8, every edge e of the

labelled quotient graph Q has a translational vector v(e) = (c1, . . . , cn) and is a Λ-

equivalence class [p, q]+Λ for some p, q ∈ S whose unit cells U(p), U(q) are related by

the translation along
n∑

i=1
civi. Then we can lift the edge e to the periodically translated

straight-line edges [p+ v, q + v +
n∑

i=1
civi] in the periodic graph G for all v ∈ Λ.

Definition 10 (path/cycle sum). For a path (sequence of consecutive edges) in a

labelled quotient graph Q, we make all directions of edges consistent in the sequence

and define the path sum in Zn as the sum of the resulting translational vectors along

the path. If the path is a closed cycle, then the path sum is called the cycle sum.

In the labelled quotient graph in Fig. 3, the upper cycle consisting of the directed

orange edge (from p to q) and the inverted green edge (from q to p) has the cycle

sum (1, 1) + (0,−1) = (1, 0). This cycle sum means that a lifting of the cycle to the

periodic graph G in R2 produces a polygonal path connecting a point to its translate

by the vector v1 = (1, 0) in the next cell to the right.

Definition 11 (minimal tree MST(S/Λ)). For a periodic point set S ⊂ Rn with a

lattice Λ, the minimal tree is a Minimum Spanning Tree MST(S/Λ) on the set S/Λ

of Λ-equivalence classes of points, where the distance between any classes in S/Λ is

the minimum Euclidean distance between their representatives in the periodic set S.

In Fig. 3, MST(S/Λ) consists of the shortest green edge in G/Λ.
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3. Algorithm for the bridge length of a periodic point set

This section will describe main Algorithm 15 for solving Problem 3, which will call

auxiliary Algorithm 12 several times. Algorithm 12 starts from a conventional repre-

sentation of a periodic set S ⊂ Rn with a motif M of points given by coordinates in

a basis v1, . . . ,vn of a lattice Λ as in a Crystallographic Information File (CIF).

At every call, Algorithm 12 returns the next shortest edge e between points of S in

increasing order of length. This edge e will be represented by an ordered pair of points

p, q ∈ M and a translational vector (c1, . . . , cn) ∈ Zn so that the actual straight-line

edge in the lifted periodic graph G ⊂ Rn is from p to q +
n∑

i=1
civi. For convenience,

we also include the Euclidean distance d = |q − p+
n∑

i=1
civi| between these endpoints.

Then Algorithm 12 outputs any edge e as a tuple (p, q; c1, . . . , cn; d).

Algorithm 12 maintains the list of already found edges in increasing order of length.

If the next required edge e is already in the list, Algorithm 12 simply returns e. This

shortcut is implemented in Python with the keyword ‘Yield’, see the documentation

at https://docs.python.org/3/glossary.html#term-generator-iterator.

Rather than starting from line 1 every time Algorithm 12 runs, each ’Yield e’ returns

e, then temporarily suspends processing, remembering the location execution state

including all local variables. When the generator is called again, Algorithm 12 picks

up where it left off in contrast to functions that start fresh on every invocation.

If the next edge e is not yet found, Algorithm 12 adds more points from a shell of

unit cells surrounding the previously considered cells. This shell contains the extended

motif Mk without the smaller motif Mk−1 for k > 1, see Fig. 2. For any new point

p, it suffices to consider only edges to points q ∈ M ⊂ U because any edge e can be

periodically translated by v ∈ Λ so that one of the endpoints of e belongs to U .

Algorithm 12. Input: basis v1, . . . ,vn defining a unit cell U , a motif M ⊂ U .
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next edge runs only until the next Yield, and outputs the yielded edge.

1: supercell size=0, current batch=[], next batch=[], next batch min len=infinity

2: while True do

3: for transl vector in [−supercell size, supercell size]n do

4: if max([abs(i) for i in transl vector])!=supercell size then Continue

5: end if

6: for source in the motif M do

7: for dest in the motif M do

8: true dest = dest+ basis · transl vector

9: length = distance(source, dest)

10: next batch.add(length,M.index(source),M.index(dest),transl vector)

11: if length < next batch min len then next batch min len=length

12: end if

13: end for

14: end for

15: end for

16: while current batch do

17: next = min(current batch)

18: if next ≥ next batch min len then Break

19: end if

20: current batch.pop(next)

21: Yield(next)

22: end while

23: current batch.extend(next batch), next batch=[], supercell size++

24: end while

There is a faster way of checking a condition equivalent to next batch min len by
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using the cell geometry. Then in the vast majority of cases the algorithm can stop

at a supercell one size smaller, which dramatically speeds up the calculation. This

calculation is described in Remark 13. However, due to the possibility of that not

being the case (upon which the algorithm would just default to the same supercell

size), we will keep this simpler idea and use it for the time complexity calculations.

Remark 13 (a faster way to compute next batch min len in Algorithm 12). For

a unit cell with a basis v1, . . . ,vn, let ai and bi be the shortest vectors parallel and

antiparallel to vi from any point of a motif M ⊂ U to the opposite boundary faces of

the unit cell U . Then the faster alternative for next batch min len is

min
i=1,...,n

(|ai|+ |bi|+ supercell size ∗ |vi|).

As all the vector lengths |ai|, |bi|, i = 1, . . . , n can be pre-computed, we get a massive

improvement over the calculation of next batch min len in Algorithm 12.

Algorithm 15 will be building a labelled quotient graph Q by adding (or ignoring)

edges found by Algorithm 12 and monitoring the connectivity of the growing lifted

graph G whose quotient G/Λ is Q. For a basis v1, . . . ,vn of a unit cell U of the

lattice Λ of S, the edge e between points p and q +
n∑

i=1
civi ∈ S is added to Q as

the edge between the Λ-equivalence classes of p and q, with the translational vector

v(e) = (c1, . . . , cn) ∈ Zn. As soon as G becomes connected, the length of the last

added edge is the bridge length β(S), which will be proved in Theorem 23 later.

In comparison with a Minimum Spanning Tree built on a finite set of points, veri-

fying the connectivity of the lifted periodic graph requires a much more complicated

check that a set of translational vectors with integer coordinates is a basis in Zn (not

Rn), which can have more than n vectors. For example, the vectors (1, 0), (0, 2), (0, 3)

form a basis of Z2 because (0, 3) − (0, 2) = (0, 1) but the vectors (0, 2) and (0, 3) are

not proportional by an integer, so no subset of these 3 vectors is a basis of Z2.
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Algorithm 15 will use the Smith Normal Form (SNF) of a matrix of vectors (c1, . . . , cn)

in Zn, see p. 26 in (Newman, 1972), (Cohn, 1985), and chapter 3.6 in (Van der Waer-

den, 2003) for finitely generated modules over a Principal Ideal Domain (PID).

Definition 14 (Smith Normal Form and invariant factors). For integers m ≥ n, let

A be a non-zero n×m matrix over a Principal Ideal Domain P , for example, P = Z.

Then there exist invertible n×n and m×m-matrices L,R, respectively, with coefficients

in P , such that the product LAR is an n×m matrix whose only non-zero entries are

diagonal elements ai such that ai divides ai+1 for i = 1, . . . , j − 1, and ai = 0 for

i = j, . . . , n for some 1 < j ≤ n. This diagonal matrix LAR is the Smith Normal

Form (SNF) of A, and the diagonal elements ai are the invariant factors of A.

Let 1 denote the unit element of a Principal Ideal Domain P . If P = Z, then 1 is the

usual integer 1. The simplest SNF has all invariant factors equal to 1, which happens

if and only if the last factor an = 1 because all previous ai should divide an.

Algorithm 15 (Finding the bridge length β(S) of any periodic point set S ⊂ Rn).

Initialisation. A labelled quotient graph Q and a forest F ⊂ Q initially consist of m

isolated vertices, each representing a Λ-equivalence class of a point of the motif of S.

We will build a translational matrix A with columns in Zn, which is initially empty.

Loop stage. Consider the next edge e = next edge() found by Algorithm 12.

Case 1. If adding the edge e to the current forest F would not form a closed cycle

(ignoring all edge directions), then add e to F and Q as an edge with an arbitrarily

chosen direction and corresponding translational vector v(e) found by Algorithm 12.

Case 2. If adding the edge e to F does form a cycle, find its cycle sum c ∈ Zn

from Definition 10. If c is not 0 ∈ Zn and cannot be expressed as an integer linear

combination of the columns from the current translational matrix A, then add e to Q

(but not to the forest F ) and add the vector c as a new column to the matrix A.
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Termination. We stop if both conditions below hold, otherwise continue the loop.

(1) the labelled quotient graph Q (hence the forest F ) becomes connected; and

(2) the matrix A (whose columns are cycle sums of cycles created by adding edges)

has n invariant factors equal to 1, see Definition 14.

The necessity of termination condition 1 in Algorithm 15 means that if the lifted

periodic graph G is connected then so is its quotient Q = G/Λ. The inverse implication

(sufficiency) may not hold. For example, in Fig. 3, the minimal tree MST(S/Λ) is

a single green edge eg, whose preimage under the quotient map G → G/Λ is the

disconnected set of all green straight-line edges in the periodic graph G ⊂ R2.

Example 16 (running Algorithm 15 on the periodic point set S in Fig. 3). The

first addition to the quotient graph Q and forest F , which initially had two isolated

vertices p, q, is the shortest green edge eg from p to q (case 1 in the loop stage) with

the translational vector c(eg) = (0, 1) ∈ Z2. The matrix A remains empty.

Adding the next (by length) blue edge eb with c(eb) = (0, 0) to F = {eg} creates a

cycle with the cycle sum c = c(eg) − c(eb) = (0, 1). According to case 2 in the loop

stage, the quotient graph Q becomes the cycle of two edges eg∪eb but the forest remains

F = {eg}. The matrix A becomes one column

(
0
1

)
, which has only one invariant

factor equal to 1. The 2nd termination condition is not yet satisfied and the current

lifted graph consisting of all green and blue segments is still disconnected.

Adding the orange edge eo with c(eo) = (1, 1) to F creates another cycle with the

cycle sum c′ = c(eg)−c(eo) = (−1, 0). The quotient graph Q = eg∪eb∪eo is now full but

F = {eg} is still one edge. The matrix A becomes

(
0 −1
1 0

)
whose SNF =

(
1 0
0 1

)
shows that A has 2 invariant factors equal to 1. Both termination conditions hold and

the lifted graph G of all green, blue, and orange edges is connected. The bridge length

β(S) equals the length of the last (orange) edge as expected.
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4. Correctness and time complexity of the bridge length algorithm

This section proves the correctness of Algorithm 15 in Theorem 23 finding the bridge

length and main Theorem 5 about its time complexity. Lemmas 17-18 will prove the

necessity of termination condition 2 in Algorithm 15. Both conditions 1 and 2 will

guarantee the connectedness of the lifted periodic graph G due to Lemma 20.

Lemma 17 (basis in Zn ⇔ n invariant factors equal 1). The columns of any n ×m

matrix A form a basis of Zn if and only if A has n invariant factors equal to 1.

Proof. Let In be the identity n× n matrix whose columns w1, . . . ,wn form the stan-

dard orthonormal basis of Zn. If the columns u1, . . . ,um of A form a basis of Zn, then

wi =
m∑
j=1

ujrij , i = 1 . . . , n, for some rij ∈ Z. These n ×m values rij complemented

by the m − n zero columns form the m × m matrix R such that by Definition 14

the product InAR is the Smith Normal Form of A with all invariant factors equal to

1. Conversely, if the Smith Normal Form LAR from Definition 14 has all invariant

factors equal to 1, the m columns of the n×m matrix AR and hence the m columns

of the matrix A form a basis of Zn. Indeed, transforming these m columns by the

invertible n×n matrix L gives the standard orthonormal basis w1, . . . ,wn of Zn.

Lemma 18 (connected G ⇒ n invariant factors equal 1). In Algorithm 15, if the

lifted periodic graph G ⊂ Rn becomes connected, then the translational matrix A has

n invariant factors equal to 1.

Proof. By Lemma 17 it suffices to show that any vector v ∈ Zn is an integer linear

combination of columns of A. Choose any point p ∈ S. Then the points p and p + v

are connected in the lifted periodic graph G ⊂ Rn by a polygonal path of straight-

line edges. Under G → G/Λ, this path projects to a closed cycle C at the vertex

(Λ-equivalence class) p+ Λ in the labelled quotient graph Q = G/Λ.
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Let the cycle C pass through edges e1, . . . , ek (with integer multiplicities) in the

complement Q− F of the forest F in the quotient graph Q. These edges were added

only to Q in case 2 of the loop stage. When we tried to add every edge ej to F , the edge

ej created a cycle Cj whose cycle sum appeared as a column in the translational matrix

A (if this cycle sum was not yet an integer combination of the previous columns). Then

the vector v equals the sum of the cycle sums of all the cycles Cj for j = 1, . . . , k,

which is an integer combination of the columns of A as required.

Lemma 19 (connected G/Λ ⇒ ∃ a tree of representatives T ⊂ G). If a labelled

quotient graph Q = G/Λ is connected, its lifted graph G ⊂ Rn on a periodic point set S

with a motif of m points and a lattice Λ includes a straight-line tree of representatives

T ⊂ G whose m vertices are not Λ-equivalent to each other.

Proof. Since Q is connected, we can choose a spanning tree F ⊂ Q on the m vertices

of Q. The required tree T ⊂ G will be a connected union of straight-line edges of G

that map 1-1 to all edges of F under the quotient G → Q. Start from any point p ∈ S

and take any edge e at the vertex (Λ-equivalence class) p+Λ of F ⊂ Q. The preimage

of e under G → Q contains a unique straight-line edge [p, q] ⊂ G, which we add to T .

After adding to T all edges at p that project to all edges of F at p+Λ, choose another

point p′ ∈ T such that the vertex p′ +Λ has an edge of F not yet covered by T under

G → Q. We continue adding edges to T by using their projections in F ⊂ Q until we

get a full tree T ⊂ G that spans all m non-Λ-equivalent points of S.

Lemma 20 (termination conditions in Algorithm 15 ⇒ connected G). Let Q be a

labelled quotient graph with a translational matrix A and a lifted graph G on a periodic

point set S ⊂ Rn with a lattice Λ. If Q is connected and the matrix A has n invariant

factors equal to 1, then the lifted periodic graph G is connected.

Proof. For any points p, q ∈ S, we find a path of straight-line edges in G as follows.
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By Lemma 19, the connectedness of the quotient graph Q = G/Λ guarantees a tree

T ⊂ G whose vertices represent all Λ-equivalences classes of points of S. Let p′, q′ be

the vertices of T that are Λ-equivalent to p, q, respectively.

Since p′, q′ are connected by a path in T , it suffices to find a path from p to its

Λ-translate p′ = p+ v (then similarly from q to q′) in the graph G for any v ∈ Λ. By

Lemma 17 the columns of A form a basis of Zn, so v is an integer combination of these

columns. It remains to find a path in G by assuming that v is one column of A. This

column can appear in A only in case 2 of the loop stage in Algorithm 15 as a cycle

sum of a cycle C ⊂ Q that was created by trying to add an edge e from Algorithm 12

to a forest F ⊂ Q. If we order all edges of C from the vertex p+ Λ as e1, . . . , ek, the

sum of their translation vectors equals v. We build a path from p to p + v in G by

finding a unique edge [p, p1] ⊂ G that projects to e1, then a unique edge [p1, p2] ⊂ G

that projects to e2 and so on until we cover all e1, . . . , ek and arrive at p+ v.

Remark 21. The paper (Onus & Robins, 2022) discusses connected components of

a periodic graph K in terms of homology, namely Theorem 1(1) proves that H0(K)

has a basis of
∑N

i=1[Zd : WQi ] elements, see details in their section 3.1, but without

describing an algorithm for finding such a basis. Our results complement their approach

by proving the time complexity for checking the connectivity of a dynamic periodic

graph in Theorem 5 whilst keeping track of its connected components.

Lemma 22 (ignored edges). Let an edge e be a Λ-equivalence class of a straight-line

edge [p, q] + Λ in a lifted periodic graph G for some points p, q ∈ S. If Algorithm 15

does not add the edge e to a labelled quotient graph Q, then the points p, q are already

connected by a path in the graph G lifted from Q by Lemma 9.

Proof. The loop stage in Algorithm 15 ignores an edge e in the cases below.

Case 1. The edge e forms a cycle in Q whose cycle sum is the zero vector in Zn.
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Case 2. The edge e forms a cycle whose cycle sum equals an integer linear combination

of pre-existing cycle sums from the translational set B.

In both cases, we have either one cycle (in case 1) containing e, whose cycle sum is

0 ∈ Zn, or several cycles (in case 2), one (up to multiplicity) of which contains e, whose

total sum of translational vectors is 0 ∈ Zn. By Definition 8 each edge of Q involved in

this zero total sum can be lifted to a straight-line edge in the periodic graph G ⊂ Rn.

If we start from the given point p ∈ S, a cycle in Q and its sum 0 of translational

vectors guarantees that the sequence of the lifted edges in G finishes at the same point

p and hence forms a cycle C. This cycle C has the edge [p, q] whose exclusion keeps

the points p, q ∈ S connected by the complementary path C − [p, q].

Theorem 23. Algorithm 15 finds the bridge length β(S) from Definition 2 for any

periodic point set S ⊂ Rn with a motif M of points given in a basis v1, . . . ,vn.

Proof. Within Algorithm 15, let d be the length of the last added edge e after which

both termination conditions finally hold. By Lemma 22, all ignored edges do not create

extra connections in the graph G. By Lemmas 18 and 19, the graph G obtained before

adding the last edge e is disconnected. Lemma 20 guarantees that, after e is added, the

graph G becomes connected. Because Algortihm 12 yields edges in increasing order, e

is the shortest edge that could have this property, so the bridge length is β(S) = d.

Proof of Theorem 5. Algorithm 15 has the initialisation of a constant time O(1)

and the loop stage. We will multiply an upper bound for the number of loops by the

time complexity of each loop. One loop in Algorithm 15 consists of the checks below.

� (Check1) Does adding an edge e to a forest F create a cycle?

� (Check2) Is the cycle sum an integer combination of previous cycle sums?

� (CheckT) After appending a cycle sum c to the matrix A and calculating the

Smith Normal Form of A, does A have n invariant factors equal to 1?
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Check1 and Check2 can be done in O(m2) time, by using an antisymmetric additive

matrix R, where Rij is the sum for the path from pi to pj in the LQG Q.

In the naive case, CheckT has complexity O(N +m2) = O(N), where O(N) is the

complexity of the Smith Normal Form. Since this term is dominant, we will use O(N)

to represent the complexity of a single loop iteration of Algorithm 15. The complexity

of updating the matrix R is dominated by steps that have O(N) complexity.

A different way of performing CheckT is to append columns to A in an ’online’

fashion. This avoids the need to calculate the Smith Normal Form from scratch every

time (or often at all), and reduces the complexity to a time close to O(Mul · E · n),

where O(Mul) = O(mlog2 7) is the complexity of multiplication of m×m matrices, see

(Karstadt & Schwartz, 2020), and O(E) is the complexity of the Extended Euclidean

Algorithm. As this reduction in complexity is dominated by the price of populating

the edges with Algorithm 12, this will be irrelevant for most use cases (and is not used

in the experiments shown later). If a use case involves, say, a large or high-dimensional

pre-populated set of edges, then more information can be found in Appendix A.

Every loop iteration calls Algorithm 12. If we consider all calls to Algorithm 12 as

running sequentially, then the main loop will run at most a(U)+ 1 times, where a(U)

is the aspect ratio from Definition 4. Each loop runs through the unit cells that are

’supercell size’ away from the central cell U1. By the end, we will have run through

and yielded (a(U) + 1)n unit cells. For each unit cell Ui, we find all distances between

the m points in Ui and m points in the central cell. The required time is O(m2) for

two cells and O(m2a(U)n) for all cells.

Algorithm 15 does not actually run for every edge found by Algorithm 12 but

we assume this for simplicity. All other operations in Algorithm 12 are dominated

by the complexity O(N) for each iteration of Algorithm 15, for example checking if

Q is connected, which requires O(m) time by using the matrix R. The worst-case
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complexity for the naive implementation of Algorithm 15 is O(m2a(U)nN).

5. Experiments on real and simulated crystals, and a discussion

This section shows that exact Algorithm 15 for the bridge length substantially improves

the upper bound β(S) ≤ r(U) from Lemma 3.7 in (Anosova & Kurlin, 2022).

Table 1 reports the bridge lengths computed by Algorithm 15 on the real crystals

from Fig. 4. The names of T2 polymorphs refer to the crystalline forms α, β, γ, δ, ϵ

based on the same molecule T2. The IDs starting from 6-letter codes in the first column

of Table 1 refer to the Cambridge Structural Database (Taylor & Wood, 2019).

Fig. 4. T2 molecule and 5 crystals synthesized from T2. The first four T2-α, T2-β,
T2-γ, T2-δ were reported in (Pulido et al., 2017), the last T2-ϵ in (Zhu et al., 2022).

Note that the polymorph T2-γ contains four slightly different versions in the CSD

(DEBXIT01. . . 04) because their crystal structures were determined at different tem-

peratures. The seven versions DEBXIT01. . . 07 with the same 6-letter code may look

similar even for experts. Actually, T2-δ (SEMDIA) was deposited later than others

because even the original authors confused this polymorph with earlier crystals, which

was detected by the structural invariants in (Edelsbrunner et al., 2021).

The bridge length is also an isometry invariant of periodic point sets and distin-

guishes all crystals in Table 1. Table 1 includes upper bounds of r(U) and R(S) from

Definition 4, which were proved in Lemma 3.7 from (Anosova & Kurlin, 2022). The

run times in Table 1 are recorded on a laptop with Intel i5, one 1GHz core, 8Gb RAM.
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Table 1. The bridge length β(S) of experimental T2 crystals from (Pulido et al., 2017).
CSD ref codes number bridge upper upper best upper bound running
of experimental of atoms length bound bound over exact value time,
T2 crystals in a cell β(S), Å r(U), Å R(S), Å R(S)/β(S) seconds
T2-α NAVXUG 184 2.028 22.325 15.609 7.695 4.337
T2-δ SEMDIA 92 2.713 14.401 8.350 3.077 0.671
T2-γ DEBXIT01 92 1.879 23.224 23.224 12.358 0.706
T2-γ DEBXIT02 92 1.926 23.226 23.226 12.061 0.636
T2-γ DEBXIT03 92 1.902 23.230 23.230 12.216 0.653
T2-γ DEBXIT04 92 1.970 23.290 23.290 11.824 0.649
T2-β DEBXIT05 92 3.163 20.665 12.906 4.080 0.664
T2-β DEBXIT06 92 3.188 20.694 12.884 4.042 0.657
T2-ϵ DEBXIT07 92 2.062 12.608 5.707 2.768 0.641
T2 average 295.8 2.293 15.203 9.110 3.973 31.653

The final row contains the averages for 5,679 simulated T2 crystals, which which

are publicly available in the supplementary materials of (Pulido et al., 2017) and were

used for predicting the 5 experimental polymorphs represented by 9 entries in the

CSD. For all crystals in Table 1, the translational basis size never exceeded 3.

We thank all reviewers for their valuable time and helpful suggestions.

Appendix A
A faster ’online’ algorithm for the Smith Normal Form

Recalling from Definition 14 that the diagonal of LAR is made up of the invariant

factors of A. To progressively calculate the Smith Normal Form, we must only keep

track of the right-multiplying unimodular matrix R, and the invariant factors them-

selves (a vector F ∈ Zn). To run the main algorithm here, we do have to begin with a

matrix with n integer linearly independent rows. ’Adding’ a vector v to F is where the

process changes. We treat R and F as mutable, meaning each value is not necessarily

fixed to its original assignment. The first step is to define x := v ∗ R, then we find

gi = gcd(xi, Fi). If Fi = gi (i.e., Fi divides xi), we can continue with i := i+ 1, with

no need to change R as it only keeps track of columns (for context, if we were keeping
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track of L, too, we would have to subtract the ith row from the last row xi/Fi times).

If Fi divides xi for all i, we would know that including the vector changes nothing,

therefore the relative edge is also irrelevant and can be discarded (this reduces the

complexity of most CheckT from O(N) to O(Mul + log2(n)). However, if gi < Fi,

then Fi not only becomes gi, we also know that the SNF will change, and that we

must add the edge relative to v. We must also alter R, accounting for the fact that F

represents the diagonal of a matrix. We can do this by any typical process of ’changing

the pivot’ in your standard SNF algorithm, ensuring that we update R in tandem.

As accounting for the previous values of i is trivial, this is worst-case equivalent to

calculating the SNF of an (n− i)× (n− i) matrix = O(Nn−i), which improves upon

the naive method of calculating the SNF from scratch upon every alteration of A.

Lemma 24. Updating the Smith Normal Form as above preserves its properties.

Proof. As we only alter with elementary row and column operations, this preserves the

Smith Normal Form. By multiplying the to-be-added row v by R before concatenating

it as a new row to F , it is the same as performing those same elementary column

operations upon a new matrix: [A0, ..,An,v] (i.e. v concatenated as a row onto A).

We then continue to perform only elementary row and column operations, and we end

with a matrix that satisfies the conditions of and SNF noted in Definition 14.

To discuss this process any further is beyond the scope of this paper, though there

are still some small tricks that take advantage of the way the ’new’ rows for consider-

ation are intrinsically related to v, and how Fi+1 divides Fi.
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Synopsis

We describe an efficient algorithm to compute the bridge length estimating the size of a
complete isoset invariant, which classifies all periodic point sets under Euclidean isometry.
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