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Abstract. The basic input of a real object is a discrete set of points such as corners or other
salient features. For our main applications in chemistry points represent atomic centers in a molecule
or solid materials. We study the problem of classifying discrete (finite and periodic) sets of unordered
points under isometry, which is any transformation preserving distances in a metric space.

The experimental noise motivates the new practical requirement to make such invariants Lipschitz
continuous so that perturbing every point in its ε-neighborhood changes the invariant up to a constant
multiple of ε in a suitable distance satisfying all metric axioms. Because given points are unordered,
the key challenge is to compute all invariants and metrics in a near-linear time of the input size.

We define a Pointwise Distance Distribution (PDD) for any discrete set and proves in addition
to the properties above the completeness of PDD for all periodic sets in general position. The PDD
can compare nearly 1.5 million crystals from the world’s four largest databases within hours on a
modest desktop computer. The impact is upholding the data integrity in crystallography because
the PDD will not allow anyone to claim a ‘new’ material as a noisy disguise of a known crystal.
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1. Introduction: motivations, problem statement, and contributions.
This paper is a substantial extension of the 10-page conference version at NeurIPS
2022 [60]. The original paper introduced the Pointwise Distance Distribution (PDD)
as an isometry invariant of a periodic set of points in any Euclidean space Rn, and
claimed the key properties (Lipschitz continuity, near-linear time computability, and
generic completeness) without proofs. This extended version defines PDD for any
discrete sets in a metric space and rigorously proves the properties above in the finite
and periodic case. We also modify the invariants in a more convenient form, speed up
the original implementation almost by an order of magnitude, and report much larger
experiments on the world’s largest experimental databases of periodic materials.

The practical motivations for a new continuous approach to classifying physical
objects will be clear after introducing the basic concepts in Definition 1.1–1.5.

Definition 1.1 (a discrete set S in a metric space X with a metric dX). A
metric space is any (possibly, infinite) set X of any objects with a distance metric
d : X×X → R satisfying the metric axioms: (1) coincidence dX(a, b) = 0 if and only
if a = b, (2) symmetry dX(a, b) = dX(b, a), and (3) triangle inequality dX(a, b) +
dX(b, a) ≥ dX(a, c) for a, b, c ∈ X. A set S ⊂ X is called discrete if there is a constant
ε > 0 such that all objects of S are ε-separated, so dX(a, b) ≥ ε for a, b ∈ S.

An example of a discrete set S is a finite set of points in Rn with the Euclidean
metric denoted by |p− q| for points p, q ∈ Rn. The positivity of a metric d(a, b) ≥ 0
follows from the axioms above: 2d(a, b) = d(a, b) + d(b, a) ≥ d(a, a) = 0. Without
the first axiom, the distance d is called a pseudo-metric and can be even the zero:
d(a, b) = 0 for all a, b. If the triangle inequality fails with any additive error ε > 0,
the results of clustering such as k-means and DBSCAN may not be trustworthy [49].
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Definition 1.2 (lattice, unit cell, motif, periodic set). Vectors v1, . . . , vn ∈ Rn

form a basis if any vector in Rn can be written as v =
n∑

i=1

tivi for unique t1, . . . , tn ∈ R.

Any basis generates the lattice Λ = {
n∑

i=1

civi | c1, . . . , cn ∈ Z} and the unit cell

U = {
n∑

i=1

tivi | 0 ≤ ti < 1, i = 1, . . . , n}. For any finite set of points (called a motif)

M ⊂ U , the sum S = M + Λ = {p+ v | p ∈ M, v ∈ Λ} is called a periodic point set.

Any unit cell U is a parallepiped with a partial boundary: we exclude the points
with any coefficient ti = 1, i = 1, . . . , n, for convenience so that Rn is tiled by the
shifted cells U + v for v ∈ Λ without overlaps. Any lattice is an example of a periodic
set with one point in a motif. Any periodic point set S = M +Λ can be considered a
finite union

⋃
p∈M (p+ Λ) of lattices whose origins are shifted to all points p ∈ M .

If we double a unit cell in one direction, e.g. by taking the basis 2v1, v2, . . . , vn,
the doubled motif M ∪ (M + v1) with the sublattice on the new basis defines the
original periodic point set S = M +Λ. A basis and its cell U of S are called primitive
if U has the smallest volume among all unit cells of S. Fig. 1 (left) shows a square
lattice in R2, which (as any lattice) can be generated by infinitely many primitive
bases. Even if we fix a basis, Fig. 1 (middle) shows that different motifs in the same
primitive cell U define equivalent periodic point sets, which differ only by translation.

Fig. 1. Left: a lattice can be defined by many primitive bases. Middle: a periodic set can be
defined by different pairs (basis, motif). Right: a hierarchy of discrete sets, which model periodic
crystals, amorphous solids, and liquids with points at atomic centers, see Definitions 1.1, 1.2, 1.5.

Finite and periodic point sets represent molecules and periodic crystals at the
atomic scale by considering zero-sized points at all atomic centers. In theory, chem-
ical bonds can be modelled by straight-line edges between atomic centers. However,
even the strongest covalent bonds within a molecule depend on various thresholds for
distances and angles. In other words, these bonds are not real sticks in space and only
abstractly represent inter-atomic interactions, while atomic nuclei are proper physical
objects. We model all materials at the fundamental level of atoms, which will turn
out to suffice for experimental materials. Because the same object such as a lattice
can be defined in many different ways, Definition 1.3 formalizes an equivalence.

Definition 1.3 (equivalence relation). An equivalence is a binary relation (de-
noted by ∼) on any kind of objects satisfying the following axioms: (1) reflexivity: any
objects S is equivalent to itself, so S ∼ S; (2) symmetry: if S ∼ Q, then Q ∼ S; (3)
transitivity: if S ∼ Q and Q ∼ T , then S ∼ T . Any object S defines its equivalence
class [S] = {Q | Q ∼ S} as the full collection of all objects Q equivalent to S.

The transitivity axiom justifies that all equivalence classes are disjoint: if [S] and
[T ] share a common object Q, then [S] = [T ]. Any well-defined classification should
be based on an equivalence, whose practical examples are considered below.
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Definition 1.4 (isometry, rigid motion in Rn). In a metric space X, an isom-
etry is any map f : X → X that preserves inter-point distances, i.e. d(f(p), f(q)) =
d(p, q) for all p, q ∈ X. In Rn, all isometries decompose into translations, rotations,
and reflections, which all form the Euclidean group E(n). If reflections are excluded,
orientation-preserving isometries are also called rigid motions and form group SE(n).

The rigid motion (denoted by ∼=) is the strongest equivalence for many objects
in practice because translations and rotations of a molecule or solid material keep
all their properties at least under the same ambient conditions such as temperature
and pressure. The isometry (denoted by ≃) is only slightly weaker by allowing re-
flections. Taking compositions with a uniform scaling in Rn or including (say) affine
transformations, we get weaker equivalences that define smaller spaces of classes.

This paper focuses on isometry as a more general equivalence defined in any metric
space. Our main problem will be to continuously parametrize equivalence classes of
(various kinds of) discrete sets under isometry. Delone sets were introduced [20] as
(r,R)-systems in Rn and make sense in any metric space X. Let B̄(p; r) = {q ∈ X |
d(p, q) ≤ r} be the closed ball with a center p ∈ X and a radius r.

Definition 1.5 (Delone sets andm-regular sets). In a metric space X, a Delone
set S is any subset of X satisfying the following conditions:

(a) packing: there is a radius r > 0 such that the closed balls B̄(p; r) for all points
p ∈ S are disjoint or, equivalently, all distances between points of S are at least 2r;

(b) covering: there is a radius R > 0 such that B̄(p;R) for all p ∈ S cover X, i.e.⋃
p∈S

B̄(p;R) = X, or, equivalently, B̄(p;R) for any p ∈ X has at least on point of S.

A Delone set is called m-regular if S splits into m classes under the global isometry
equivalence: p ∼ q if there is an isometry f : X → X such that f(S) = S, f(p) = q.

The packing condition implies that S is a discrete set X by specifying a minimum
inter-point distance ε = 2r and is well-motivated by the fact that real atoms strongly
repel each other at very short distances. The covering condition says that X has no
unbounded ‘empty’ balls without any points of S and is also motivated by the absence
of infinite round pores in solid materials, liquids, and even some dense gases.

All m-regular sets for m ≥ 1 are also called multi-regular, while 1-regular sets
are often called regular. Any lattice Λ ⊂ Rn is regular because the required isometry
f : Λ → Λ mapping a point p ∈ Λ to another q ∈ Λ is the translation by the vector
q− p. Similarly, any periodic point set S is m-regular, where m is upper bounded by
the size of a motif M of S. A honeycomb periodic set in R2, which models graphene,
is not a lattice due to two points in a primitive unit cell but is regular. The regularity
means that S looks the same when viewed from any point of S. Fig. 1 (middle) shows
a 2-regular set whose points split into red and blue classes under the global isometry
equivalence. [21, Theorem 1.3] proved that any multi-regular Delone set is periodic.

A finite set in Rn is not a Delone set but any finite subset of a finite metric space
is Delone. The latter special case is indicated by cyan and orange regions slightly
touching each other in Fig. 1 (middle). All other inclusions are strict, not to scale.

The key tool in classifying under an equivalence is an invariant that is a function
I taking the same value on all equivalent objects. For a finite set S ⊂ Rn, the number

m of points is an isometry invariant, but the geometric average
1

m

∑
p∈S

p is not, so the

center of mass cannot be reliably used to distinguish rigid conformations of molecules.
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We state the mapping problem for any discrete sets under isometry, though the
same conditions make sense for many other objects, e.g. graphs and polygonal meshes,
and equivalence, e.g. rigid motions and affine transformations in Rn.

Problem 1.6 (mapping problem for spaces of discrete sets under isometry).
For a metric space X with a metric dX , find a map I : {discrete sets of unordered
points in X} → a metric space with a metric d satisfying the following conditions.

(a) Completeness: any sets S ≃ Q are isometric if and only if I(S) = I(Q).

(b) Realizability: the image {I(S) | S ⊂ X} is parametrized so that taking any value
of I from this image allows us to reconstruct S ⊂ X uniquely up to isometry of X.

(c) Lipschitz continuity: there is a constant λ such that if Q is obtained by per-
turbing each point of S up to ε in the metric dX , then d(I(S), I(Q)) ≤ λε.

(d) Computability: the invariant I, the metric d, and the reconstruction of S ⊂ X
from I(S) can be computed in a time that depends polynomially on the input sizes.

For any finite set S ⊂ X, its input size is the number m of points. For any
periodic point set S ⊂ Rn, its input size is the size of a motif M from Definition 1.2
because a Crystallographic Information File (CIF) specifying for any periodic crystal
a basis and atomic coordinates in this basis has a linear length O(m) in the motif size.
Some infinite Delone sets can described in a finite form, e.g. quasi-periodic crystals
[54] can be obtained as projections of periodic crystals in higher dimensions.

We leave these general cases for future work and will focus on finite and periodic
point sets, which already cover many applications where Problem 1.6 was open.

The completeness in (1.6a) implies that the invariant I is a descriptor with no
false negatives and no false positives for all discrete sets, and hence can be considered
a DNA-style code that uniquely identifies any isometry class. The realizability in
(1.6b) is even stronger and enables us to sample the space of realizable invariants and
reconstruct the resulting set S, while a real DNA code is insufficient to grow a living
organism. The Lipschitz continuity in (1.6c) is motivated by the ever-present thermal
vibrations and experimental noise. Fig. 2 (left) shows that almost any perturbation
of points can arbitrarily scale up a primitive cell. This inherent discontinuity of
traditional cell-based representations remained a practical loophole in crystallography
at least since 1965 [43] and allowed disguising known materials by a slight perturbation
abruptly changing the space group and even the primitive cell volume, and also by
replacing some chemical elements to avoid detection by chemical composition.

Fig. 2. Left: the symmetry group and a reduced cell discontinuously change under tiny noise.
Middle: the space of 3 points under isometry is parametrized by inter-point distances 0 < a ≤
b ≤ c ≤ a + b Right: energy landscapes of crystals show optimized structures as isolated peaks of
height= −energy. To see beyond the ‘fog’, we need a map parametrized by invariants in Problem 1.6.

Fig. 2 (middle) shows a solution of Problem 1.6 for m = 3 points saying that
any triangle is determined under isometry by 3 ordered inter-point distances. Real or
simulated crystals are local optima (mountain peaks) in Fig. 2 (right) on a continuous
space of (isometry classes of) periodic point sets, whose ‘geography’ was unknown.
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Contributions. We introduce the Pointwise Distance Distribution for any discrete
set in a metric space. This generality is of broad interest to experts in computational
geometry and applications to physical objects from molecules to solid or even liquid
materials. The previously unpublished aspects are the rigorous proofs of the Lipschitz
continuity, near-linear time computability, and generic completeness in the finite and
periodic case. The linear-time algorithms and the hierarchical nature of PDD com-
putations have become extremely important for big databases, especially in the last
years when thousands of artificial materials were claimed as ‘new’ without checking
for duplication with known crystals. The decisive advance is closing this discontinuity
loophole in crystallography, which is demonstrated in the world’s largest databases.

2. Review of rigorous approaches to mapping spaces of discrete sets.
This section reviews progress in solving Problem 1.6 for finite and periodic point sets
by proof-based methods than by experimental studies, which are reviewed in [60, 62].
Finite sets have two subcases: ordered points (easy) and unordered (much harder).

Ordered finite sets. Kendall’s shape theory [38] studiesm ordered points p1, . . . , pm ∈
Rn whose complete isometry invariant is the distance matrix [53, 39] or the Gram ma-
trix of scalar products pi · pj , see [59, chapter 2.9], [58]. A brute-force extension to m
unordered points requires m! matrices due to m! permutations ruled out by (1.6d).

Unordered finite sets (also called point clouds). Extending the case of m = 3
points in Fig. 2 (middle), Boutin and Kemper proved in 2004 that the unordered
distribution of distances between m points uniquely determines a generic m-point
cloud C ⊂ Rn under isometry [6]. This general position means almost all clouds
apart form a measure 0 subspace among all clouds. For any cloud C of m unordered
points in a metric space X, writing all distances in increasing order gives the Sorted

Distance Vector SDV(C) of m(m−1)
2 values computable in time O(m2 logm) The space

of 4-point clouds in R2 has dimension 5 because 6 inter-point distances satisfy one
polynomial equation saying that the tetrahedron on these points has volume 0. Fig. 3
shows a 4-parameter family of pairs of non-isometric clouds with the same SDV.

Fig. 3. Non-isometric clouds of 4 points with the same 6 pairwise distances. Left: the trapezoid
T has points (±2, 1), (±4,−1). The kite K has (5, 0), (−3, 0), (−1,±2). Right: the infinite family
of non-isometric clouds C+ ̸≃ C− sharing p1, p2, p3 and depending on parameters a, b, c, d > 0.

Problem 1.6 expands the question ‘Can we hear the shape of a drum?’ [36] which
has has the negative answer in terms of 2D polygons that are indistinguishable by
spectral invariants [30, 31, 50, 19, 46]. Problem 1.6 looks for stronger invariants that
can completely ‘sense’ as in (1.6b), not only ‘hear’, the rigid shape of any cloud.

Computational geometry studied earlier versions of Problem 1.6 by developing
canonical representations of point clouds [1, 7, 8, 4], which can be considered complete
invariants, or (separately) metrics between isometry classes of clouds. For example,
any metric between fixed clouds extends to their isometry classes [34, 15, 13] by min-
imization over infinitely many transformations from the group E(n). This extension
of the Hausdorff distance [33] for m-point clouds in R2 has time O(m5 logm), see
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[14, 29]. The Gromov-Wasserstein metrics [47] are defined for metric-measure spaces
also by minimizing over infinitely many correspondences between points, but cannot
be approximated with a factor less than 3 in polynomial time unless P=NP, see Corol-
lary 3.8 in [52] and polynomial algorithms for partial cases in [45]. Also, computing
a metric between isometry classes of clouds is only a part of Problem 1.6. Indeed,
to efficiently navigate on Earth, in addition to distances between cities, we need a
satellite-type view of the whole planet and hence a realizable continuous invariant I,
which can be considered an analog of the latitude and longitude coordinates.

Classical crystallography studied

Geometric Data Science has gradually developed and solved simpler versions of
Problem 1.6 since 2020 when the continuity condition was first stated for lattices [48].
The case of 2D lattices was finished in [41] with a slightly weaker Hölder continuity
(because the Lipschitz continuity is impossible under perturbations of a lattice basis)
for a stronger relation under rigid motion in R2, see continuous chiral distances and
geographic-style maps in [10, 9]. The case of 3D lattices is being finalized in [40].

For general periodic point sets, the latest advance announced in [60] without
proofs is the Pointwise Distance Distribution (PDD), which solves Problem 1.6 for
finite and periodic point sets in general position. This PDD previously appeared as a
local distribution of distances in the finite case [47] without studying the conditions of
Problem 1.6. For finite point clouds in Rn, the complete invariants under rigid motion
with Lipschitz continuous metrics were developed in [62]. The high polynomial-time
complexity of these latest invariants motivates using the much faster PDD in practice.

3. The Pointwise Distance Distribution in the finite and periodic case.
This section introduces the Pointwise Distance Distribution (PDD) for any finite
subset M of a discrete set S in a metric space X. If S is finite, we always set M = S.
If S is periodic, M is a motif of S, but PDD will depend only on S, not on M .

Definition 3.1 (PDD and AMD invariants). Let M = {p1, . . . , pm} be a finite
subset of a discrete set S in a metric space X. Fix an integer k ≥ 1. For every point
pi ∈ M , let d1(p) ≤ · · · ≤ dk(p) be the distances from p to its k nearest neighbors
within the full set S (not restricted to M). The matrix D(S; k) has m rows consisting
of the distances d1(pi), . . . , dk(pi) for i = 1, . . . ,m. If any l ≥ 1 rows coincide, we
collapse them into a single row and assign the weight l/m to this row. The resulting
matrix of maximum m rows and k+1 columns including the extra (say, 0-th) column
of weights is the Pointwise Distance Distribution PDD(S; k). The Average Minimum
Distance AMDi is the weighted average of the i-th column in PDD(S; k) for each
i = 1, . . . , k. Let AMD(S; k) denote the vector (AMD1, . . . ,AMDk).

Example 3.2 (4-point clouds T,K in Fig. 3 (left)). Table 1 shows the 4 × 3
matrices D(S; 3) from Definition 3.1. The matrix D(T ; 3) in Table 1 has two pairs
of identical rows, so the matrix PDD(T ; 3) consists of two rows of weight 1

2 below.
The matrix D(K; 3) in Table 1 has only one pair of identical rows, so PDD(K; 3) has
three rows of weights 1

2 ,
1
4 ,

1
4 . Then T,K are distinguished already by PDD for k = 1.

PDD(T ; 3) =

(
1/2

√
2 2

√
10

1/2
√
2

√
10 4

)
̸=

PDD(K; 3) =

 1/4
√
2

√
2 4

1/2
√
2 2

√
10

1/4
√
10

√
10 4

.

Theorem 3.1 (invariance of PDD). For any finite set S in a metric space X
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Table 1
Each point in T,K ⊂ R2 from Figure 3 (left) has distances to other points in increasing order.

After keeping only distances (not neighbors), the resulting PDD invariants distinguish T ̸≃ K.

T points neighbor 1 neighbor 2 neighbor 3

(−2, 0)
√
2 to (−1,+1)

√
10 to (+1,+1) 4 to (+2, 0)

(+2, 0)
√
2 to (+1,+1)

√
10 to (−1,−1) 4 to (−2, 0)

(−1, 1)
√
2 to (−2, 0) 2 to (+1,+1)

√
10 to (+2, 0)

(+1, 1)
√
2 to (+2, 0) 2 to (−1,+1)

√
10 to (−2, 0)

K points neighbor 1 neighbor 2 neighbor 3

(−1, 0)
√
2 to (0,−1)

√
2 to (0,+1) 4 to (3, 0)

(+3, 0)
√
10 to (0,−1)

√
10 to (0,+1) 4 to (−1, 0)

(0,−1)
√
2 to (−1, 0) 2 to (0,+1)

√
10 to (3, 0)

(0,+1)
√
2 to (−1, 0) 2 to (0,−1)

√
10 to (3, 0)

or a periodic point set S ⊂ Rn, the Pointwise Distance Distribution PDD(S; k) from
Definition 3.1 and AMD(S; k) are isometry invariants of S for any k ≥ 1.

Proof. For any finite set S ⊂ X, the isometry invariance follows from the fact
that any isometry preserves all inter-point distances by Definition 1.4.

For any periodic point set S ⊂ Rn, we first show that scaling up a cell U to a
non-primitive cell keeps PDD(S; k) invariant. It suffices to scale up a cell U by a
factor of l, say along the first basis vector v⃗1 of U , then the number m of motif points
of S is multiplied by l. Then D(S; k) from Definition 3.1 has the larger size lm × k
but (due to periodicity) consists of l-tuples of identical rows of distances from points
p + iv⃗1, i = 0, . . . , l − 1, to their k neighbors within S. Then PDD(S; k) remains
invariant under all isometries due to the arguments below.

We will show below that the matrix D(S; k) and hence PDD(S; k) is independent
of a primitive unit cell. Let U,U ′ be primitive cells of a periodic set S ⊂ Rn with
a lattice Λ. Any point q ∈ S ∩ U ′ can be translated by some v⃗ ∈ Λ to a point
p ∈ S ∩U and vice versa. These translations establish a bijection between the motifs
S ∩ U ↔ S ∩ U ′ and preserve distances. So PDD(S; k) is the same for both U,U ′.

Now we prove that PDD(S; k) is preserved by any isometry f of Rn. Any primitive
cell U of S is bijectively mapped by f to the unit cell f(U) of Q = f(S), which should
be also primitive. Indeed, if Q is preserved by a translation along a vector v that
doesn’t have all integer coefficients in the basis of f(U), then S = f−1(Q) is preserved
by the translation along f−1(v), which doesn’t have all integer coefficients in the basis
of U , so U was non-primitive. Since U and f(U) have the same number of points
from S and Q = f(S), the isometry f gives a bijection between the motifs of S,Q.

For any periodic sets S,Q, because f maintains distances, every list of ordered
distances from pi ∈ S ∩ U to its first k nearest neighbors in S, coincides with the list
of the ordered distances from f(pi) to its first k neighbors in Q. These coincidences
of distance lists give PDD(S; k) = PDD(Q; k) after collapsing identical rows.

Because PDD has ordered columns (by the index k of neighbors) and unordered
rows (representing points in a motif), all such matrices even with different numbers
of rows can be compared by Earth Mover’s Distance, or other metrics on weighted
distributions, see Definition 4.1. We can convert any PDD into a fixed-size matrix,
which can be flattened into a vector for easy comparisons, while keeping the conti-
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nuity and almost all invariant data. Any distribution of m unordered values can be
reconstructed from its m moments defined below. When all weights wi are rational
as in our case, the distribution can be expanded to equal-weighted values a1, . . . , am.
The m moments can recover all a1, . . . , am as roots of a polynomial of degree m whose
coefficients are expressed via the m moments [44]. For example, any reals a, b are the
roots of t2 − (a+ b)t+ ab, where ab = 1

2 ((a+ b)2 − (a2 + b2)).

Let A be any unordered set of real numbers a1, . . . , am with weights w1, . . . , wm,

respectively, such that
m∑
i=1

wi = 1. For any integer l ≥ 1 , the l-th moment [37,

section 2.7] is µl(A) = l

√
m1−l

m∑
i=1

wiali, so µ1(A) =
m∑
i=1

wiai is the usual average. For

l ≥ 2, we avoid subtracting µ1 from ai’s, which would convert µ2 into the standard
deviation σ, and normalize by the factor m(1/l)−1 to guarantee the continuity of all
moments with the Lipschitz constant λ = 2.

Definition 3.3 (Pointwise Distance Moment PDM[l]). Fix integers l, h ≥ 1.
For a column A of the Pointwise Distance Distribution PDD(S; k), which consists of
unordered numbers a1, . . . , am with weights from Definition 3.1, write the new col-
umn (µ1(A), . . . , µl(A)). The new l × k) matrix is the Pointwise Distance Moment
PDM[l](S; k).

PDM[1](S; k) is called the vector of Average Minimum Distances AMD(S; k) =
(AMD1, . . . ,AMDk). The matrix PDM[l] has ordered rows and columns but is a bit
weaker than PDD (with the same h, k1, . . . , kh) because each column is reconstructable
from its moments (for large enough l) only up to permutation, but PDM[l] more
quickly filters distant crystals. We can flatten any matrix PDM[l] with indexed entries
to a vector. Vectors u, v ∈ Rm of distances are compared by L∞(u, v) = max

i=1,...,m
|ui −

vi| which controllably changes under perturbations of interatomic distances.

The number k of neighbors is considered not a parameter that affects the invariant
but as a degree of approximation like the number of decimal places on a calculator.

If we increase k, more columns with larger values are added to PDD(S; k) but all
previous distances remain the same. We will describe the asymptotic of PDD(S; k).

Definition 3.4 (Point Packing Coefficient PPC). The volume of the unit ball in

Rn is Vn =
πn/2

Γ(n2 + 1)
, where Γ(m) = (m−1)! and Γ(m2 +1) =

√
π(m− 1

2 )(m− 3
2 ) · · ·

1
2

for integer m ≥ 1. Let a periodic point set S ⊂ Rn have a unit cell U of volume vol(U)

The Point Packing Coefficient is PPC(S) = n

√
vol(U)

mVn
.

Lemma 3.5 is a slightly variation of [61, Lemma 12], see its proof in appendix A.

Lemma 3.5 (distance bounds). Let S ⊂ Rn be a periodic point set with a unit
cell U of a diameter d. For any point p ∈ S ∩ U , let dk(S; p) be the distance from p
to its k-th nearest neighbor in S. Then c(S) n

√
k − d < dk(S; p) ≤ c(S) n

√
k + d, k ≥ 1.

Theorem 3.6 (asymptotic of PDD(S; k) as k → +∞). For any point p in a
periodic point set S ⊂ Rn, let dk(S) be the distance from p to its k-th nearest neighbor

in S. Then lim
k→+∞

dk(S)
n
√
k

= PPC(S).

Proof. The proof follows from Lemma 3.5 after dividing the proved upper bound
|dk(S)− c(S) n

√
k| ≤ d by n

√
k and taking the limit as k → +∞.
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4. Lipschitz continuous Earth Mover’s Distance on PDD invariants.
The continuity of PDD(S; k) under perturbations of S will be measured by the Earth
Mover’s Distance [51], which applies to any weighted distributions of different sizes.

Definition 4.1 is for any vector I(S) = ([w1(S), R1(S)], . . . , [wm(S), Rm(S)(S)]) of

pointwise invariants of a set S with weights wi(S) ∈ (0, 1] satisfying
m(S)∑
i=1

wi(S) = 1.

Later we consider only the case when [wi, Ri] is the i-th row of PDD(S; k). Then
m(S) is the number of rows in PDD(S; k). Each row Ri(S) should have a size inde-
pendent of S, for example, a number k of neighbors in the matrix PDD(S; k).

For any vectors Ri = (ri1, . . . , rik) and Rj = (rj1, . . . , rjk) of k values, we use the
L∞-distance |Ri − Rj |∞ = max

l=1,...,k
|ril − rjl|∞ to get the Lipschitz constant λ = 2.

Other Minkowski metrics Lq for q ≥ 1 will lead to higher Lipschitz constants, also
depending on k, while L∞ is motivated by bounded vibrations of atoms.

Definition 4.1 (Earth Mover’s Distance EMD). Let finite or periodic sets S,Q
in Rn have weighted vectors I(S), I(Q) as discussed above. A flow from I(S) to I(Q) is
an m(S)×m(Q) matrix whose element fij ∈ [0, 1] represents a partial flow from Ri(S)
to Rj(Q). The Earth Mover’s Distance is the minimum cost EMD(I(S), I(Q)) =
m(S)∑
i=1

m(Q)∑
j=1

fij |Ri(S) − Rj(Q)| for fij ∈ [0, 1] subject to
m(Q)∑
j=1

fij ≤ wi(S) for i =

1, . . . ,m(S),
m(S)∑
i=1

fij ≤ wj(Q) for j = 1, . . . ,m(Q),
m(S)∑
i=1

m(Q)∑
j=1

fij = 1.

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S)

of the component Ri(S) ‘flows’ into all components Rj(Q) via ‘flows’ fij for j =

1, . . . ,m(Q). The second condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij from

Ri(S) for i = 1, . . . ,m(S) ‘flow’ into Rj(Q) up to the maximum weight wj(Q). The

last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to ‘flow’ all rows Ri(S) to all rows Rj(Q).

The EMD satisfies all metric axioms [51, appendix], needs O(m3 logm) time for
distributions of a maximum size m and is approximated in O(m) time [55, 27].

Theorem 4.1 (lower bound of EMD). For finite or periodic point sets S,Q ⊂
Rn, we have EMD(PDD(S; k),PDD(Q; k)) ≥ ||AMD(S; k)−AMD(Q; k))||∞, k ≥ 1.

Proof. Considering PDD(S; k) as a weighted distribution of rows, AMD(S; k) is
its centroid from [17, section 3]. The lower bound follows from [17, Theorem 1].

Theorem 4.2 uses bounded perturbations of points up to ε in the metric dX
of an ambient space X. Because atoms are not considered outliers or noise, such
perturbations can be formalized as the bottleneck distance dB(S,Q) = inf

g:S→Q
sup
p∈S

|p−

g(p)| minimized over all bijections g : S → Q between infinite sets. [60, Example 2.1]
shows that the 1-dimensional lattices Z and (1 + δ)Z have dB = +∞ for any δ > 0.

If any lattices have equal density (or unit cell volume), they have a finite bot-
tleneck distance dB by [22, Theorem 1(iii)]. If we consider only periodic point sets
S,Q ⊂ Rn with the same density (or unit cells of the same volume), dB(S,Q) becomes
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a well-defined wobbling distance [11], which is still discontinuous under perturbations
by [60, Example 2.2], see related results for non-periodic sets in [42].

Recall that the packing radius r(S), which is the minimum half-distance between
any points of S. Equivalently, r(S) is the maximum radius r to have disjoint open
balls of radius r centered at all points of S. Theorem 4.2 substantially generalizes the
fact that shifting any points up to ε changes the distance between them up to 2ε.

Theorem 4.2 (continuity of PDD). Let Q be obtained from a finite or periodic
set S by perturbing every point of S up to ε in the metric dX of an ambient metric
space X. In the case of a periodic point set S ⊂ Rn, we also assume that r(S) > ε.
Then EMD(PDD(S; k),PDD(Q; k)) ≤ 2ε for any k ≥ 1.

Theorem 4.2 will be proved by using Lemmas 4.2, 4.3, 4.4 below. The first two
lemmas appeared in similar forms in [26, Lemma 2] and [61, Lemma 8], respectively,
so appendix A includes their more detailed proofs for completeness.

Lemma 4.2 (common lattice). Let periodic point sets S,Q ⊂ Rn have a bottle-
neck distance dB(S,Q) < r(Q), where r(Q) is the packing radius. Then S,Q have a
common lattice Λ with a unit cell U such that S = Λ+(U ∩S) and Q = Λ+(U ∩Q).

Lemma 4.3 (perturbed distances). For some ε > 0, let g : S → Q be a bijection
between finite or periodic sets such that |a − g(a)| ≤ ε for all a ∈ S. Then, for
any i ≥ 1, let ai ∈ S and bi ∈ Q be the i-th nearest neighbors of points a ∈ S and
b = g(a) ∈ Q, respectively. Then the Euclidean distances from the points a, b to their
i-th neighbors ai, bi are 2ε-close to each other, i.e. ||a− ai| − |b− bi|| ≤ 2ε.

Lemma 4.4 (perturbed distance vectors). For ε > 0, let g : S → Q be a bijection
between finite or periodic sets so that |a − g(a)| ≤ ε for all a ∈ S. Then g changes

the vector R⃗a(S) = (|a − a1|, . . . , |a − ak|) of the first k minimum distances from
any point a ∈ S to its k nearest neighbors a1, . . . , ak ∈ S by at most 2ε in the L∞-
distance. So if b1, . . . , bk ∈ Q are the k nearest neighbors of b = g(a) within Q and

R⃗b(S) = (|b − b1|, . . . , |b − bk|) is the vector of the first k minimum distances from

b = g(a), then the L∞-distance |R⃗a(S)− R⃗b(Q)|∞ ≤ 2ε.

Proof. By Lemma 4.3 every coordinate of the vector R⃗a(S) changes by at most

2ε. Hence the L∞-distance from R⃗a(S) to the perturbed vector R⃗b(Q) is at most 2ε.

Proof of Theorem 4.2. The bottleneck distance is dB(S,Q) = inf
g:S→Q

sup
a∈S

|a−g(a)|

between point sets S,Q. Then for any δ > 0 there is a bijection g : S → Q such that
sup
a∈S

|a − g(a)| ≤ dB(S,Q) + δ. If the given sets S,Q are finite, one can set δ = 0.

Indeed, there are only finitely many bijections S → Q, hence the infimum in the
definition above is achieved for one of them.

By Lemma 4.2, if the sets S,Q are periodic, they have a common lattice Λ. Any
primitive cell U of Λ is a unit cell of S,Q, i.e. S = Λ+ (S ∩U) and Q = Λ+ (Q∩U).
Since the bottleneck distance ε = dB(S,Q) < r(S), we can define a bijection g from
every point a ∈ S to its closest point g(a) ∈ Q. If U is a non-primitive unit cell
of S, the distance matrix D(S; k) can be constructed as in Definition 3.1, but each
row will be repeated n(S) times, where n(S) is vol(U) divided by the volume of a
primitive unit cell of S. So we can assume that S,Q share a unit cell U and have
in U the same number m(S) = m(Q), say both are equal to m. For any k ≥ 1,
we first define the simple 1-1 flow from the rows of D(S; k) to the rows of D(Q; k)
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by setting fii = 1
m and fij = 0 for i ̸= j, where i, j = 1, . . . ,m. Recall that Def-

inition 3.1 collapses all rows of D(S; k) that are identical to each other to a single
row, similar for D(Q; k). By summing up weights of collapsed rows, the above flow
induces a flow from all distance vectors in PDD(S; k), e.g. Ri(S) in the i-th row
of PDD(S; k), to all distance vectors in PDD(Q; k), e.g. Rj(Q) in the j-th row

of PDD(Q; k). Then EMD(PDD(S; k),PDD(Q; k)) ≤ 1
m

m∑
i=1

|R⃗i(S) − R⃗i(Q)|∞, be-

cause EMD minimizes the cost over all flows in Definition 4.1. Because |R⃗i(S) −
R⃗i(Q)| ≤ 2(dB(S,Q) + δ) by Lemma 4.4, we get EMD(PDD(S; k),PDD(Q; k)) ≤
1
m

m∑
i=1

2(dB(S,Q)+ δ) = 2(dB(S,Q)+ δ). Since the last inequality holds for any small

δ > 0, we get EMD(PDD(S; k),PDD(Q; k)) ≤ 2dB(S,Q).

5. Generic completeness of Pointwise Distance Distributions. We prove
the generic completeness in both finite (easy) and periodic (much harder) cases.

Theorem 5.1. Any cloud C ⊂ Rn of m unordered points with distinct inter-point
distances. can be reconstructed from PDD(C;m− 1), uniquely up to isometry.

Proof. Under the given condition of general position, every inter-point distance
|p − q| between points p, q ∈ C appears twice in PDD(C;m − 1): once in the row
of p and once in the row of q. After choosing an arbitrary order on the points,
PDD(C;m−1) suffices to reconstruct the classical distance matrix on ordered points.
This distance matrix enables a uniquely reconstruction of C up to isometry [53, 39].

For a periodic point set S ⊂ Rn, the generic completeness of PDD is much harder
because infinitely many distances between points of S are repeated due to periodicity.
We introduce a few auxiliary concepts to define distance-generic periodic sets later.

For any point p in a lattice Λ ⊂ Rn, the open Voronoi domain V (Λ; p) = {q ∈
Rn | |q − p| < |q − p′| for any p′ ∈ Λ − p} is the neighborhood of all points q ∈ Rn

that are strictly close to p than to all other points p′ of the lattice Λ [23].

The Voronoi domains V (Λ; p) of different points p ∈ Λ are disjoint translation
copies of each other and their closures tile Rn, so ∪p∈ΛV̄ (Λ; p) = Rn.

For a generic lattice Λ ⊂ R2, V (Λ; p) is a centrally symmetric hexagon. Points
p, p′ ∈ Λ are Voronoi neighbors if their Voronoi domains share a boundary point,
so V̄ (Λ; p) ∩ V̄ (Λ, p′) ̸= ∅. Below we always assume that any lattice Λ is shifted to
contain the origin 0, also any periodic point set S = Λ+M has a point at 0.

Definition 5.2 (neighbor set N(Λ) and basis distances). For any lattice Λ ⊂
Rn, the neighbor set of the origin 0 is N(Λ) = Λ∩B̄(0; r)−{0} for a minimum radius
r such that N(Λ) is not contained in any affine (n − 1)-dimensional subspace of Rn

and N(Λ) includes all n+ 1 nearest neighbors (within Λ) of any point q ∈ V (Λ; p).

For any point q ∈ V (Λ; 0), consider all n-tuples (p1, . . . , pn) of points pi ∈ N(Λ)
such that the vectors p⃗1, . . . , p⃗n, form a linear basis of Rn. Order p1, . . . , pn by their
distances to q. Choose a lexicographically smallest list of basis distances d1(q) ≤ · · · ≤
dn(q) from the point q over all n-tuples (p1, . . . , pn) described above.

The lattice Z2 has the neighbor set N(Z2) = {(±1, 0), (0,±1)}. If Λ is generated
by (2, 0), (0, 1), the neighbor set N(Λ) ⊂ Λ includes the 3rd neighbors (0,±2) of
the points (0,±0.4) ∈ V (Λ; 0). Indeed, if Definition 5.2 has a radius r < 2, then
Λ ∩ B̄(0; r) − {0} = {(0,±1)} but the y-axis does not generate R2. For q = (0, 0.4),
considering all pairs (p1, p2) among the four possibilities ((0,±1), (±2, 0)), we find the
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basis distances d1(q) = 0.6 < d2(q) =
√
0.42 + 22 for the 2nd and 3rd lattice neighbors

p1 = (0, 1) and p2 = (±2, 0) of q.

Lemma 5.3. The neighbor set N(Λ) of any lattice Λ is covered by B̄(0; 2R(Λ)),
where the packing radius R(Λ) is the minimum R > 0 such that ∪p∈ΛB̄(p;R) = Rn.

Proof of Lemma 5.3. Any point p in the closure V̄ (Λ; 0) has n+1 lattice neighbors
(within Λ) among the origin 0 ∈ Λ and at least 2(2n − 1) Voronoi neighbors of 0.

In Rn, any vertex of the boundary of V̄ (Λ; 0) is equidistant to at least n+1 points
of Λ (the origin 0 and its n Voronoi neighbors). The longest of these distances is the
covering radius R(Λ). The closed ball B̄(0; 2R(Λ)) covers all Voronoi neighbors of 0,
hence all points of N(Λ).

The condition of a linear basis in Definition 5.2 guarantees that n + 1 linearly
independent vectors p⃗1, . . . , p⃗n uniquely identify a point q by their basis distances
d1(q), . . . , dn(q).

Definition 5.4 (a distance-generic set). A periodic point set S = Λ+M ⊂ Rn

with the origin 0 ∈ Λ ⊂ S is distance-generic if the following conditions hold.

(5.4a) The vectors p⃗, q⃗ are not orthogonal for any points p, q ∈ S ∩ V (Λ; 0).

(5.4b) For any vectors u⃗, v⃗ between any two pairs of points in S, if |u⃗| = l|v⃗| ≤ 2R(Λ)
for l = 1, 2, then u⃗ = ±lv⃗ and v⃗ ∈ Λ.

(5.4c) For any point q ∈ V (Λ; 0), let d0 be the distance from q to its closest neighbor
p0 = 0 within Λ. Take any points p1, . . . , pn in the neighbor set N(Λ) with distances
d1 ≤ · · · ≤ dn to q. The n + 1 spheres C(pi; di) with the centers pi and radii di,
i = 0, . . . , n, can meet at the single point q ∈ V (Λ; 0) only if d1 ≤ · · · ≤ dn are the
basis distances of q, hence p⃗1, . . . , p⃗n form a linear basis of Rn, only for at most two
tuples p1, . . . , pn ∈ N(Λ) symmetric in 0.

Condition (5.4b) means that all inter-point distances are distinct apart from neces-
sary exceptions due to periodicity. Since any periodic set S = Λ+M ⊂ Rn is invariant
under translations along vectors of its lattices Λ, condition (5.4b) for |v⃗| ≤ 2diam[U ]
can be checked only for vectors from all points in the Voronoi domain V (Λ; 0) to all
points in the extended domain 3V (Λ; 0).

Condition (5.4b) allows us to recognize lattice distances from any point p ∈ M
to its lattice translates Λ + p in the row of PDD(S; k) representing p. Indeed, only
a lattice distance d appears in the row together with 2d (and possibly with higher
multiples) by condition (5.4b). Any lattice distance d and its multiple are repeated
twice in every row, because any lattice is centrally symmetric.

All conditions of Definition 5.4 can be written as algebraic equations via coor-
dinates of motif points and basis vectors of a unit cell. Almost all n + 1 spheres
in Rn have no common points, so condition (5.4c) forbids very singular situations,
which can be practically checked since the neighbor set N(Λ) is finite for any lattice
Λ containing 0. Hence any periodic point set can be made distance-generic by almost
any perturbation of points and lattice basis.

The number m of points in a unit cell U is an isometry invariant because any
isometry maps U to another cell of the same size. In dimensions n = 2, 3, any lattice
Λ can be reconstructed from its isometry invariants [18, 41, 40].

Theorem 5.1 assumes that a lattice Λ is given and reconstructs a periodic point
set S = Λ+M in any dimension n ≥ 2.
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Theorem 5.1 (generic completeness of PDD). Let S = Λ + M ⊂ Rn be a
distance-generic periodic set with m points in a motif M . Let R(Λ) be the smallest
radius such that all closed balls with centers p ∈ Λ cover Rn. Let 2R(Λ) be smaller
than all distances in the last column of PDD(S; k) for a big enough k. The set S is
uniquely reconstructed up to isometry from Λ, m, PDD(S; k).

Proof. Assuming that PDD(S; k) is realizable by a periodic point set S = Λ+M ,
we will reconstruct all motif points p ∈ V (Λ; 0), uniquely up to the central symmetry
of Rn with respect to 0. The given number m of points in a unit cell U of S is a
common multiple of all denominators in rational weights of the rows in the given
matrix PDD(S; k). Enlarge PDD(S; k) replacing every row of a weight w by mw
identical rows of weight 1

m .

One can assume that the origin 0 ∈ Λ belongs to the motif M of S and is
represented by the first row of PDD(S; k). If PDD(S; k) has m ≥ 2 rows, we will
reconstruct all other m− 1 points of S within the open Voronoi domain V (Λ; 0). No
points of S can be on the boundary of V (Λ; 0) due to condition (5.4b) on distinct
distances.

Remove from each row of PDD(S; k) all lattice distances between any points of
Λ. Then every remaining distance is between only points p, q ∈ S such that p−q ̸∈ Λ.
Any point q ∈ S∩V (Λ; 0)−{0} has its first lattice neighbor 0 at the distance d0 = |q|
and a lexicographically smallest list of basis distances d1(q) < · · · < dn(q) from q to its
further n lattice neighbors p1, . . . , pn ∈ N(Λ) ⊂ Λ−0 such that the vectors p⃗1, . . . , p⃗n
form a basis of Rn. All basis distances are distinct due to (5.4b). By Lemma 5.3 they
appear once in both rows of the points 0, q ∈ S in PDD(S; k) after d0 = |q|.

Though the basis distances of q may not be the n smallest values appearing after
d0 = |q| in the first and second rows of 0 and q, we will try all n-distance subsequences
d′1 < · · · < d′n shared by both rows. Similarly, we cannot be sure that n + 1 closest
neighbors of q in Λ form an affine basis of Rn. Hence we try all n-tuples of points
p1, . . . , pn ∈ N(Λ; 0) whose vectors form a linear basis of Rn.

For all finitely many choices above, we check if the n+ 1 spheres S(pi; d
′
i), which

are 1D circles (for n = 2) or 2D spheres (for n = 3), meet at a single point in V (Λ; 0),
which is the reconstructed q.

Condition (5.4c) guarantees that these n+1 spheres can intersect at a single point
in the open Voronoi domain V (Λ; 0) only if all the conditions of Definition 5.4 hold.

Firstly, the vectors p⃗1, . . . , p⃗n should form a linear basis of Rn. Secondly, if some
distances d1 < · · · < dn are the basis distances from q to p1, . . . , pn only if this
list is the lexicographically smallest over all tuples {p1, . . . , pn} ⊂ N(Λ) that form
a linear basis. Thirdly, the single-point intersection happens only for two subsets
{p1, . . . , pn} ⊂ N(Λ) related by the central symmetry with respect to 0. This sym-
metry is an isometry preserving the lattice Λ and the distances d0 < d1 < · · · < dn.
By making a choice to resolve this inevitable ambiguity, we uniquely identify a point
q ∈ S ∩ V (Λ; 0)− {0} relative to the fixed Λ.

If the matrix PDD(S; k) has m ≥ 3 rows, any further point p ∈ (S − {0, q}) ∩
V (Λ; 0) will be uniquely determined as follows. Similarly to the point q above, we
determine a position of p using its basis distances d0(p) < d1(p) < · · · < dn(p) to
points 0 = p0, p1, . . . , pn ∈ N(Λ). At the end of reconstruction, we have a final choice
between ±p symmetric with respect to the origin 0.

Since the second point q is already fixed, the third point p is also restricted by the
distance |p− q| appearing once only in the second and third rows of PDD(S; k). The
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distance |p − q| doesn’t help to resolve the ambiguity between ±p only if q belongs
to the bisector of points equidistant to ±p. In this case, p, 0, q form a right-angle
triangle, which is forbidden by condition (5.4a). Hence p and any further point of
S ∩ V (Λ; 0) is uniquely determined by q and Λ.

6. Near-linear time algorithm for Pointwise Distance Distributions.
The key input sizes for computing PDD(S; k) are the number m of points in a unit
cell U and the number k of neighbors. The full input consists of k and a periodic
point set S ⊂ Rn given by a cell basis and a motif of m points with coordinates in this
basis as described in Definition 1.2. For a fixed dimension n and other parameters,
the asymptotic complexity of PDD(S; k) will depend near linearly in each of k,m.

The output PDD(S; k) is a matrix with at most m rows and exactly k+1 columns,
where m is the number of motif points. The first column contains the weights of rows,
which sum to 1 and are proportional to the number of appearances of the row before
collapsing in Definition 3.1, see the detailed code in appendix B. For any unit cell U ,

consider the diameter diam(U) = sup
p,q∈U

|p− q| and the skewness ν = diam(U)
n
√

vol(U)
.

Theorem 6.1 (PDD complexity). Let a periodic set S ⊂ Rn have m points in
a unit cell U . For a fixed dimension n, PDD(S; k) is computed in a near-linear time
O(km(5ν)nVn log(m) log2(k)), where Vn is the unit ball volume in Rn.

Appendix A has a proof of Lemma 6.1, which appeared in [61, Lemma 11].

Lemma 6.1 (bounds on points within a ball). Let S ⊂ Rn be any periodic
point set with a unit cell U , which generates a lattice Λ and has a diameter d =
diam(U). For any point p ∈ S∩U and a radius r, consider the lower union U ′(p; r) =⋃
{(U + v⃗) such that v⃗ ∈ Λ, (U + v⃗) ⊂ B̄(p; r)} and the upper union U ′′(p; r) =⋃
{(U + v⃗) such that v⃗ ∈ Λ, (U + v⃗) ∩ B̄(p; r) ̸= ∅}. Then the number of points from

S in the closed ball B̄(p; r) with center p and radius r has the bounds(
r − d

c(S)

)n

≤ m
vol[U ′(p; r)]

vol[U ]
≤ |S ∩ B̄(p; r)| ≤ m

vol[U ′′(p; r)]

vol[U ]
≤
(
r + d

c(S)

)n

.

Proof of Theorem 6.1. Let the origin 0 ∈ Rn be in the center of the unit cell U .
If d is the diameter of U , any point p ∈ M = S ∩ U is covered by the closed ball
B̄(0, 0.5d). By Lemma 3.5, all k neighbors of p are covered by the ball B̄(0; r) of radius
r = c(S) n

√
k + 1.5d. To generate all Λ-translates of M within B̄(0; r), we gradually

extend U in spherical layers by adding more shifted cells until we get the upper union
U ′′(0; r) ⊃ B̄(0; r). By Lemma 6.1 the union U ′′(0; r) includes k neighbors of motif

points and has at most µ ≤ m
vol[U ′′(0; r)]

vol[U ]
≤

≤

(
c(S) n

√
k + 2.5d

c(S)

)n

=

(
n
√
k +

2.5d

c(S)

)n

= O(2n(k +m(2.5ν)nVn)) points.

To get the last expression, we use the rough estimate (a + b)n ≤ 2n(an + bn) with

an = k, bn =

(
2.5d

c(S)

)n

=
(2.5d)n

vol[U ]
mVn = m(2.5ν)nVn for ν =

d
n
√
vol[U ]

.

A cover tree on µ points can be built in time O(µ logµ), where hidden parameters
were recently revisited in [24, 25] by correcting mistakes in proofs and pseudo-code
for cover trees. The ordered lists of distances are the rows of the matrix D(S; k). It
remains only to lexicographically sortm lists of ordered distances in timeO(km logm).
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Indeed, a comparison of ordered lists of the length k takes O(k) time. Using logµ =
n log 2 +O(log(k +m(2.5ν)nVn)) = nO(log(km)), the total time is

O(µ logµ+mk log2 k) = O(2n(k +m(2.5ν)nVn)n log(km) +mk log2 k) =

= O((5ν)nVnkm log2(km)), which is near linear in both key inputs k,m.

7. Upholding the data integrity of the world’s largest databases. This
section reports thousands of previously unknown (near-)duplicates in the world’s five
largest databases [56, 32, 63, 35]. The sizes in Table 2 below are the numbers of
all periodic crystals (no disorder and full geometric data) in September 2024 (total
number 1,433,650, nearly 1.5 million), see details of experiments in appendix C.

Table 2
Links and sizes (numbers of pure periodic crystals) of the world’s five largest databases.

database and web address crystals
CSD : Cambridge Structural Database 831,126
http://ccdc.cam.ac.uk/solutions/software/csd
COD : Crystallography Open Database 344,127
http://www.crystallography.net/cod
ICSD : Inorganic Crystal Struct. Database 105,162
icsd.products.fiz-karlsruhe.de/en
MP : Materials Project by the Berkeley lab 153,235
http://next-gen.materialsproject.org

To neutralize the effect of increasing distances AMDk with respect to k, Theo-
rem 3.6 motivated us to subtract the asymptotic PPC(S) 3

√
k in Definition 7.1.

Definition 7.1 (Average/Pointwise Deviations from Asymptotic: ADA,PDA).
Distances in PDD(S; k) are increasing in k by Theorem 3.6, to avoid the dominance by
the largest value of k, the vector ADA(S; k) and matrix PDA(S; k) are obtained from
AMD(S; k),PDD(S; k) by subtracting PPC(S) n

√
i from each i-th coordinate/column,

respectively, for all i = 1, . . . , k.

While AMDk(S) monotonically increases in k, the invariants ADAk(S) can be
positive or negative as deviations around the asymptotic PPC(S) 3

√
k. Fig. 4 reveals

geometric differences between the mainly organic databases CSD and Crystallography
Open Database (COD) versus the inorganic databases ICSD and MP. In all cases,
ADAk decreases to 0 as k → +∞ justifying our computations up to k = 100 below.

We first used the vector ADA(S; 100) to find nearest neighbors across all databases
by kd-trees [28] up to L∞ ≤ 0.01Å. Since the smallest inter-atomic distances are about
1Å = 10−10m, atomic displacements up to 0.01Å are considered experimental noise.
For the closest pairs found by ADA(S; 100), the stronger PDA(S; 100) can have only
larger distances EMD ≥ L∞ by [17, section 3]. The CSD, COD, ICSD are expected to
have only experimental structures. MP is obtained from ICSD by extra simulations.

Table 3 shows that the well-curated 59-year-old CSD has 0.9% near-duplicate
crystals, while more than a third of the ICSD consists of near-duplicates that are
geometrically almost identical so that all atoms can be matched by an average per-
turbation up to 0.01Å. [3, section 6] described thousands of more embarrassing exact
duplicates, where chemical elements were replaced while keeping all coordinates fixed.
These replacements are physically impossible without more substantial perturbations,
so several journals are investigating integrity [12], see more examples in Appendix C.
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Fig. 4. The averages of ADAk and standard deviations (1 sigma shaded) vs
3
√
k.

The bold numbers in Table 3 count near-duplicates within each database, which
should be filtered out for any analysis or machine learning else the ground truth data
becomes skewed, see the percentages for different thresholds in Fig. 3 (right). Other
numbers are matches across different databases.

Table 3
Count and percentage of all pure periodic crystals in each database (left) found to have a near-

duplicate in other databases (top) by the distance EMD < 0.01Å on matrices PDA(S; 100).

databases CSD COD ICSD MP
count % count % count % count %

CSD 7687 0.9 272649 32.8 4649 0.6 21 0.0
COD 276328 80.3 19231 5.6 36553 10.6 5239 1.52
ICSD 4736 4.5 48899 46.5 35189 33.5 16386 15.6
MP 64 0.0 11989 7.82 14312 9.3 19177 12.5

In the past, the (near-)duplicates were impossible to detect at scale, because the
traditional comparison through iterative alignment of 15 (by default) molecules by
the COMPACK algorithm [16] is too slow for all-vs-all comparisons. Tables 4 and 5
compare the running times: hours of PDA(S; 100) vs years of RMSD, extrapolated
for the same machine from the median time 117 ms (average 582 ms) on 500 random
pairs in the CSD. On the same 500 pairs, PDA(S; 100) for two crystals per pair and
distance EMD took only 7.48 milliseconds on average. All experiments were done on
a typical desktop (AMD Ryzen 5 5600X 6-core, 32GB RAM).

8. Conclusions, limitations, future work and growing impact. For more
than 100 years, crystals were classified almost exclusively by discrete invariants such as
space groups or by using reduced cells, which 3D structures from diffraction patterns.
Fig. 2 (left) showed that any known crystal can also be disguised by changing a unit
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Table 4
Times in seconds (less than 8.5 hours in total) to find near-duplicates in Table 3 with EMD ≤

0.01Å on PDA(S; 100) across five major databases, compare with years in Table 5.

databases CSD COD ICSD MP sum of times, hrs:min:sec
CSD 403.6 1979.3 42.9 6.2 0:40:32
COD 1979.3 609.7 2249.8 1525.4 1:46:05
ICSD 42.9 2249.8 3362.1 4428.1 2:35:78
MP 6.2 1525.4 4428.1 4431.8 2:53:21

Table 5
These times for all comparisons by COMPACK [16] are extrapolated from the median time of

117 ms on 500 random pairs from the CSD on the same typical desktop, which completed Table 3
of near-duplicates across all five databases within 8.5 hours.

database periodic crystals all unordered pairs time, seconds years
CSD 831,126 345,384,798,375 4.04× 1010 1280.5
COD 344,127 59,211,524,001 6.93× 109 219.7
ICSD 105,162 5,529,470,541 6.47× 108 20.5
MP 153,235 11,740,405,995 2.75× 109 87.1

cell, shifting atoms a bit, changing chemical elements, then claimed as ‘new’, see ap-
pendix C. Such artificially generated structures threaten the integrity of experimental
databases [12], which are already skewed by previously undetectable near-duplicates.

These challenges motivated the stronger questions “how much different?” and
“what is behind a code?”, which were formalized in Problem ?? aiming for a con-
tinuous parametrization of the space of crystals . One limitation is that PDD is not
proved to be complete and a random PDD may not be realizable by a real crystal be-
cause inter-atomic distances cannot be arbitrary, which we plan to improve in future
work for a full solution of Problem 1.6 in the periodic case. However, these invariants
already parametrize the ‘universe’ containing all known crystals as ‘shiny stars’ and
all not yet discovered crystals hidden in empty spots on the same map, see Fig. 5, 6,
7.

Descriptor Invariant Continuity Complete Reconstruction Time
primitive cell ✓
reduced cell ✓ ✓
space group ✓ ✓
PDF [57] ✓ ✓ ✓
SOAP [5] ✓ ✓ ✓
densities [26] ✓ ✓ ✓* ✓*
isosets [2] ✓ ✓ ✓ ✓ ✓*
AMD ✓ ✓ ✓
PDD ✓ ✓ ✓* ✓* ✓

Table 6
Comparison of crystal descriptors with regards to the requirements of Problem ??. PDD and

AMD are introduced in this thesis. ✓* in the ‘Computable’ column indicates that only an approxi-
mate algorithm exists to compute distances, and ✓* in the ‘Complete’ and ‘Reconstruction’ columns
means that the condition holds in general position.
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The key impact is the efficient barrier for noisy disguises of known crystals because
the invariants can quickly find all nearest neighbors of any newly claimed material in
the existing databases. We thank all reviewers for supporting scientific integrity, now
guaranteed by the proposed invariants.

Appendix A. Detailed proofs of auxiliary results.

Proof of Lemma 4.2. Choose the origin 0 ∈ Rn at a point of S. Applying trans-
lations, we can assume that primitive unit cells U(S), U(Q) of the given periodic
sets S,Q have a vertex at the origin 0. Then S = Λ(S) + (U(S) ∩ S) and Q =
Λ(Q) + (U(Q) ∩Q), where Λ(S),Λ(Q) are lattices of S,Q, respectively.

We are given that every point of Q is dB(S,Q)-close to a point of S, where the
bottleneck distance dB(S,Q) is strictly less than the packing radius r(Q).

Assume by contradiction that S,Q have no common lattice. Then there is a
point p ∈ Λ(S) whose all integer multiples kp ∈ Λ(S) do not belong to Λ(Q) for
k ∈ Z− {0}. Any such multiple kp can be translated by a vector of Λ(Q) to a point
q(k) in the unit cell U(Q) so that kp ≡ q(k) (mod Λ(Q)). Since the cell U(Q) contains
infinitely many points q(k), one can find a pair q(i) ̸= q(j) at a distance less than
δ = r(Q)− dB(S,Q) > 0. For any m ∈ Z, the following points are equivalent modulo
(translations along the vectors of) the lattice Λ(Q).

q(i+m(j − i)) ≡ (i+m(j − i))p = ip+m(jp− ip) ≡ q(i) +m(q(j)− q(i)).

These points for m ∈ Z lie in a straight line with gaps |q(j)−q(i)| < δ. The open balls
with the packing radius r(Q) and centers at all points of Q do not overlap. Hence
all closed balls with the radius dB(S,Q) < r(Q) and the same centers are at least 2δ
away from each other. Due to |q(j) − q(i)| < δ = r(Q) − dB(S,Q), there is m ∈ Z
such that q(i) + m(q(j) − q(i)) is outside the union Q + B̄(0; dB(S,Q)) of all these
smaller balls. Then q(i)+m(q(j)− q(i)) has a distance more than dB(S,Q) from any
point of Q. The translations along all vectors of the lattice Λ(Q) preserve the union
of balls Q+ B̄(0; dB(S,Q)). Then the point (i+m(j − i))p ∈ S, which is equivalent
to q(i) +m(q(j) − q(i)) modulo Λ(Q), has a distance more than dB(S,Q) from any
point of Q. This conclusion contradicts the definition of dB(S,Q).

Proof of Lemma 4.3. Shifting the point g(a) back to a, assume that a = g(a) is
fixed and all other points change their positions by at most 2ε. Assume by contra-
diction that the distance from a to its new i-th neighbor bi is less than |a− ai| − 2ε.
Then all first new i neighbors b1, . . . , bi ∈ Q of a belong to the open ball with the
center a and the radius |a− ai| − 2ε. Because the bijection g shifted every b1, . . . , bi
by at most 2ε, their preimages g−1(b1), . . . , g

−1(bi) belong to the open ball with the
center a and the radius |a−ai|. Then the i-th neighbor of a within S is among these i
preimages, i.e. the distance from a to its i-th nearest neighbor should be strictly less
than the assumed value |a − ai|. We get a contradiction assuming that the distance
from a to its new i-th neighbor bi is more than |a− ai|+ 2ε.

Proof of Lemma 6.1. Intersect the three regions U ′(p; r) ⊂ B̄(p; r) ⊂ U ′′(p; r)
with S in Rn and count resulting points: |S∩U ′(p; r)| ≤ |S∩ B̄(p; r)| ≤ |S∩U ′′(p; r)|.

The union U ′(p; r) consists of
vol[U ′(p; r)]

vol[U ]
cells, which all have the same volume

vol[U ]. Since |S ∩ U | = m, we now get |S ∩ U ′(p; r)| = m
vol[U ′(p; r)]

vol[U ]
. Similarly we
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count the points in the upper union: |S ∩ U ′′(p; r)| = m
vol[U ′′(p; r)]

vol[U ]
. The bounds of

|S ∩ B̄(p; r)| become

m
vol[U ′(p; r)]

vol[U ]
≤ |S ∩ B̄(p; r)| ≤ m

vol[U ′′(p; r)]

vol[U ]
,

vol[U ′(p; r)] ≤ vol[U ]

m
|S ∩ B̄(p; r)| ≤ vol[U ′′(p; r)].

For the diameter d of the unit cell U , the smaller ball B̄(p; r − d) is completely
contained within the lower union U ′(p; r). Indeed, if |q⃗ − p⃗| ≤ r − d, then q ∈ U + v⃗
for some v⃗ ∈ Λ. Then (U + v⃗) is covered by the ball B̄(q; d), hence by B̄(p; r) due to
the triangle inequality. The inclusion B̄(p; r − d) ⊂ U ′(p; r) implies the lower bound
for the volumes:

Vn(r − d)n = vol[B̄(p; r − d)] ≤ vol[U ′(p; r)], where

Vn is the unit ball volume in Rn. The inclusion U ′′(p; r) ⊂ B̄(p; r + d) gives

vol[U ′′(p; r)] ≤ vol[B̄(p; r + d)] = Vn(r + d)n,

Vn(r − d)n ≤ vol[U ]

m
|S ∩B(p; r)| ≤ Vn(r + d)n,

mVn

vol[U ]
(r − d)n ≤ |S ∩B(p; r)| ≤ mVn

vol[U ]
(r + d)n, which implies the result.

Proof of Lemma 3.5. The closed ball B̄(p; r) of the radius r = dk(S; p) has more
than k points (including p) from S. The upper bound of Lemma 6.1 for r = dk(S; p)

implies that k < |S ∩ B̄(p; r)| ≤ (r + d)n

(c(S))n
. Taking the n-th roots, we get n

√
k <

r + d

c(S)
,

so r = dk(S; p) > c(S) n
√
k − d.

For any smaller radius r < dk(S; p), the closed ball B̄(p; r) contains at most
k points (including p) from S. The lower bound of Lemma 6.1 for r < dk(S; p)

implies that
(r − d)n

c(S)n
≤ |S ∩ B̄(p; r)| ≤ k. Since

(r − d)n

c(S)n
≤ k holds for the constant

upper bound k and any radius r < dk(S; p), the same inequality holds for the radius

r = dk(S; p). Similarly to the upper bound, we get
r − d

c(S)
≤ n

√
k, r = dk(S; p) ≤

c(S) n
√
k + d. Combine the two bounds above as follows: c(S) n

√
k − d < dk(S; p) ≤

c(S) n
√
k + d.

Appendix B. Examples and instructions for the PDD code and data.

B.1. Pseudocode for computing Pointwise Distance Distributions (PDD).
The algorithm accepts any periodic point set S ⊂ Rn in the form of a unit cell U
and a motif M ⊂ S. The cell is given as a square n× n matrix with basis vectors in
the columns, and the motif points in Cartesian form lying inside the unit cell. For
dimension 3, the typical Crystallographic Information File (CIF) with six unit cell pa-
rameters and motif points in terms of the cell basis is easily converted to this format.
Otherwise, the unit cell and motif points can be given directly, in any dimension.

Specifically, the PDD function’s interface is as follows:
Input:



20 D. WIDDOWSON, V. KURLIN

• motif: array shape (m,n). Coordinates of motif points in Cartesian form.
• cell: array shape (n, n). Represents the unit cell in Cartesian form.
• k: int > 0. Number of columns to return in PDD(S; k).

Output:
• pdd: array with k + 1 columns.

Before giving the pseudocode, we outline some of the key objects and functions
in use:

• A generator g, which creates points from the periodic set S to find distances
to,

• KDTrees (canonically k is the dimension here, in our case it’s denoted n),
data structures designed for fast nearest-neighbour lookup in n-dimensional
space.

Once g is constructed, next(g) is called to get new points from the infinite set S.
The first call returns all points in the given unit cell (i.e. the motif), and successive
calls returns points from unit cells further from the origin in a spherical fashion.

A KDTree is constructed with a point set T , then queried with another Q, re-
turning a matrix with distances from all points in Q to their nearest neighbors (up to
some given number, k below) in T , as well as the indices of these neighbors in T .

The functions collapse_equal_rows and lexsort_rows, which perform the col-
lapsing and lexicographical sorting steps of computing PDD (Definition 3.1) respec-
tively, are assumed to be implemented elsewhere.

The following pseudocode finds PDD(S; k) for a periodic set S described by motif
and cell:
def PDD(motif, cell, k):

cloud = [] # contains points from S

g = point_generator(motif, cell)

# at least k points will be needed

while len(cloud) < k:

points = next(g)

cloud.extend(points)

# first distance query

tree = KDTree(cloud)

D_, inds = tree.query(motif, k)

D = zeros_like(D_)

# repeat until distances don’t change,

# then all nearest neighbors are found

while not D == D_:

D = D_

cloud.extend(next(g))

tree = KDTree(cloud)

D_, inds = tree.query(motif, k)

pdd = collapse_equal_rows(D_)

pdd = lexsort_rows(pdd)

return pdd



POINTWISE DISTANCE DISTRIBUTIONS OF DISCRETE SETS 21

B.2. Instructions for the attached PDD code and specific examples.
A Python script implementing Pointwise Distance Distributions along with examples
can be found in the zip archive included in this submission. Python 3.7 or greater is
required. The dependency packages are NumPy (< 1.22), SciPy (≥ 1.6.1), numba (≥
0.55.0) and ase (≥ 3.22.0); if you do not wish to affect any currently installed versions
on your machine, create and activate a virtual environment before the following.

Unzip the archive and in a terminal navigate to the unzipped folder. Install
the requirements by running pip install -r requirements.txt. Then run python

followed by the example script of choice, and then any arguments (outlined below),
e.g.

$ python kite_trapezium_example.py

trapezium: [(0, 0), (1, 1), (3, 1), (4, 0)]

PDD:

[[0.5 1.41421356 2. 3.16227766]

[0.5 1.41421356 3.16227766 4. ]]

kite: [(0, 0), (1, 1), (1, -1), (4, 0)]

PDD:

[[0.25 1.41421356 1.41421356 4. ]

[0.5 1.41421356 2. 3.16227766]

[0.25 3.16227766 3.16227766 4. ]]

EMD between trapezium and kite: 0.874032

List of included example scripts and their parameters:
• kite_trapezium_example.py prints the PDDs of the finite 4-point sets K
(kite) and T (trapezium) in Fig. ??, along with their Earth mover’s distance.

• 1D_sets_example.py shows that the 1D periodic sets in Fig. ?? are distin-
guished by their PDDs for any parameter 0 < r ≤ 1. This script requires the
parameter r to be passed after the file name, e.g. ‘python 1D_sets_example.py 0.5’.

• T2_14_15_example.py compares the crystals shown in Fig. ??, whose original
.CIFs are included. This optionally accepts the parameter k controlling the
number of columns in the computed PDD, e.g. ‘python T2_14_15_example.py --k 50’
compares by PDD with k = 50. If not included, k = 100 is used as the default.

• CSD_duplicates_example.py computes and compares the PDDs of the 5
pairs of isometric crystals from the CSD discussed in section ??, giving dis-
tances of exactly zero. This optionally accepts the parameter k control-
ling the number of columns in the computed PDD, in the same way as
T2_14_15_example.py above.

If you wish to run the code on your own sets or CIF files, you can use the functions
exposed in the main script pdd.py. Use pdd.read_cif() to parse a cif and return a
crystal, or define one manually as a tuple (motif, cell) with NumPy arrays. Pass
this as the first argument to pdd.pdd() with an integer k as the second to compute the
PDD. Pass two PDDs to pdd.emd() to calculate the Earth mover’s distance between
them. For finite sets, the function pdd.pdd_finite() accepts just one argument, an
array containing the points, and returns the PDD.

Appendix C. Details of experiments on the largest databases.
This appendix describes the main experiments in more detail. Some entries in

the CSD and COD are incomplete or disordered (not periodic). After removing such
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entries, we were left with 831,126 CSD structures and 344,127 COD structures.

Firstly, we computed PDM[10](S; 100) for all entries, taking 27 min 33 sec for
the CSD and 12 mins 15 sec for COD (2 ms per structure on average). To find exact
matches between databases by PDM, we make use of the k-d tree data structure,
designed for fast nearest neighbor lookup. A k-d tree can be constructed from any
collection of vectors, which can then be queried for a number of nearest neighbors of
a new vector, using a binary tree style algorithm with logarithmic search time.

We flattened each PDM[10](S; 100) matrix to a vector with 1000 dimensions,
constructed a k-d tree for both CSD and COD, then queried the 10 nearest neighbors
for each item in the other. If the most distant neighbor for any entry is closer than the
threshold 10−13Å (within floating point error), we extend the search and find more
neighbors until all pairs within the threshold are found. We were left with a total
of 270,669 matches; an overlap between the databases of one third of the CSD and
almost 80% of COD.

CSD refcode COD ID Notes
LAVFAP 2001334 Mixed types in original CIF
ZAYRUM 2003941 Mixed types in original CIF
FONGAQ01 2005101 Mixed types in original CIF
TIPYOG 2005914 Mixed types in original CIF
HABTAF 2001740 Mixed types in original CIF
AJIRAM01 2100097 Mixed types in original CIF
LABSAI 2001822 Mixed types in COD CIF
DECTAI 4065524 Mixed types in COD CIF
WATMIO 4309447 Mixed types in COD CIF
NAJQUK 4323901 Mixed types in COD CIF
PIHJUL 4030494 Mixed types in COD CIF
ELOJOE 4314231 CSD remarks replaced atom
MARSIH 4321045 CSD remarks replaced atom
KUTWUU 7126770 CSD remarks replaced atom
XAVDEF 4103386 CSD remarks replaced atom
JEMLAP 4101489 CSD remarks replaced atom
QUCXAP 7117360 CSD remarks replaced atom
PIBTAW 1505325 CSD remarks replaced atom
UKAXUB 7234657 CSD remarks replaced atom
POCLOK 2220314 COLYEI is a duplicate
COLYEI 8102533 POCLOK is a duplicate
JEPLIA 2213484 HIFCAB is a duplicate
LALNET 8102594 POPCAA is a duplicate
SELHAU 4027023 One entry is mistaken
PINHUP 1558382 One entry is mistaken
KABHOL 4113866 One entry is mistaken

Table 7
List of 26 matches between the CSD and COD found to have identical geometry but different

chemical compositions.

Of particular interest are the 26 pairs which have different compositions, as the
impossibility of complex organic structures sharing the exact same geometry but not
composition implies an error or labeling issue. The pairs were confirmed as geometric
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duplicates by checking their CIFs and found to have different compositions for the
reasons in Table 7.

• The original Crystallographic Information File (CIF) has atoms simultane-
ously labeled as two types or disagreement with what is reported in the pub-
lished paper (6 pairs),

• Atoms are labeled as two types in the COD CIF (5 pairs),
• Geometric duplicates known to the CSD gave a match with different compo-
sitions (4 pairs),

• A remark in the CSD entry explains that atoms were replaced in the curation
process because the deposited CIF was incorrect (8 pairs),

• The COD and CSD entries disagree for an unknown reason (3 pairs).
In addition to cross-comparing the CSD and COD, we included the ICSD and

Materials Project database (MP) and compared them all pairwise, as well as searching
for duplicates within each. Tables 8 and ?? below show how many matches were found,
and how many also shared the same composition.

databases matches same composition
CSD vs COD 270,669 270,583
CSD vs ICSD 3,913 3,913
COD vs ICSD 35,051 31,918
COD vs MP 2 2
ICSD vs MP 17 7

Table 8
Number of exact matches (PDM within 10−13Å) between four databases.
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