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Abstract
The inevitable noise in real measurements motivates the challenging problem to continuously
quantify the similarity between rigid objects such as periodic time series and 1-dimensional materials
considered up to isometry maintaining inter-point distances. The past work developed many
Hausdorff-like distances, which have slow or approximate algorithms due to minimizations over
infinitely many isometries. For all finite and 1-periodic sequences under isometry and rigid motion
in any high-dimensional Euclidean space, we introduce complete invariants and Lipschitz continuous
metrics whose time complexities are polynomial in both input size and ambient dimension.

The key novelty in the periodic case is the Lipschitz continuity under perturbations that change
a minimum period. This continuity is practically important for maintaining scientific integrity by
real-time detection of near-duplicate structures in experimental and simulated materials datasets.
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1 Motivations, problem statement, and overview of new results

This paper studies high-dimensional data that is periodic in one direction, motivated by
applications to periodic time series [19] and 1-dimensional materials [34], e.g. nanotubes [23].
Though these data sequences are periodic in one direction, say along the first coordinate
axis, the underlying points can live in a high-dimensional space R × Rn−1 for any n ≥ 1.

▶ Definition 1.1 (1-periodic sequences in R×Rn−1). Let e⃗1 be the unit vector along the first
axis in R×Rn−1 for n ≥ 1. For a period l > 0, a motif M is a set of points p1, . . . , pm in the
slice [0, l) × Rn−1 of the width l > 0. We assume that the time projections t(p1), . . . , t(pm)
under t : [0, l) × Rn−1 → [0, l) are distinct, while v(p1), . . . , v(pm) under the value projection
v : [0, l) × Rn−1 → Rn−1 are arbitrary. A 1-periodic sequence S = M + le⃗1Z is the infinite
sequence of points p(i + mj) = pi + jl ∈ Rn indexed by i + mj, where j ∈ Z, i = 1, . . . , m. ■

The slice [0, l) × Rn−1 excludes all points with t = l, which are equivalent to points with
t = 0 by translation in the time factor R. So all motif points p1, . . . , pm ∈ [0, l) × Rn−1 are
counted once and naturally ordered under the time projection t : [0, l) × Rn−1 → [0, l).

Figure 1 The periodic sequences C, S ⊂ R×R are sampled from the sine and cosine graphs. The
motifs in the shaded slice [0, 2π) × R are non-isometric, but S and C are related by translation.

▶ Example 1.2 (1-periodic sequences in R×R). Fig. 1 (left) shows the 1-periodic sequence S in
R×R (sampled from the sine graph) with the period l = 2π and motif MS of the points (0, 0),
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2 ). Similarly, measurements of many oscillating systems [28] generate sequences that
are periodic in a single time direction and non-periodic in many other directions. Fig. 1 (right)
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shows another sequence C with the same period l = 2π and a different motif MC ≠ MS .
However, S and C become identical under translation in the x-axis: sin(x − π

2 ) = cos(x). ■

This basic example illustrates a widespread ambiguity of digital representations when
many real objects look different in various coordinate systems despite being equivalent, for
example, as rigid objects. Recall that a rigid motion in Rn is any composition of translations
and rotations. If we also allow compositions with mirror reflections, we get any distance-
preserving transformation in Rn, which is called an isometry. A linear map f : Rn → Rn

preserves orientation if, for any linear basis v1, . . . , vn of Rn, the two n × n determinants
with the columns v1, . . . , vn and f(v1), . . . , f(vn) have the same sign. Any rigid motion is an
orientation-preserving isometry. We adapt these equivalences to the product R × Rn−1.

▶ Definition 1.3 (cyclic vs dihedral isometries and rigid motions in R × Rn−1). A cyclic
isometry of R × Rn−1 is a composition of a translation in the time factor R and an isometry
in the value factor Rn−1. If we allow compositions of a translation and mirror symmetry
x 7→ −x in the time factor R, the resulting isometry of R×Rn−1 is called dihedral. If we allow
only isometries that preserve orientation in the value factor Rn−1, the resulting equivalences
are called cyclic and dihedral rigid motions in the former and latter cases, respectively. ■

The adjectives cyclic and dihedral are motivated by the traditional names of the cyclic
group Cm and the dihedral group Dm consisting of orientation-preserving isometries and all
isometries in R2, respectively, that map the regular polygon on m vertices to itself.

The equivalences in Definition 1.3 make sense for any finite sequence T ⊂ R × Rn−1 but
the periodicity worsens the ambiguity of representations via a period l and a motif M as
follows. A translation in the time factor R allows us to fix any point p of a motif M at t = 0,
but this choice of p is arbitrary, so a motif M is defined only up to cyclic permutations.

The set of integers can be defined as Z with period 1 or as {0, 1} + 2Z with period 2, and
also with any integer period l > 0. For any given sequence S = {p1, . . . , pm} + le⃗1Z, we can
choose a minimum period l such that S can not be represented with a smaller period.

This classical approach in crystallography leads to an invariant I based on a minimum
period (primitive cell) and defined as a set of numerical properties preserved under any
rigid motion. Choosing standard settings [37] for a reduced cell [35] of 3-periodic crystals
theoretically defines a complete invariant that unambiguously identifies any rigid crystal.

However, fixing a minimum period creates the following discontinuity. For any small ε > 0
and integer m, any point of Z is ε-close to a unique point of the sequence {0, 1 + ε, . . . , m +
ε} + (m + 1)Z, though their minimum periods 1 and m + 1 are arbitrarily different. Hence
comparing periodic sequences by their given (minimum) motifs can miss near-duplicates.

Perturbations of points up to ε in the Euclidean distance are motivated by noise in real
measurements. Though many materials look rigid, atoms always vibrate above the absolute
zero temperature [17, chapter 1]. When the same material is characterized at different
temperatures, its structure can have arbitrarily different periods (primitive cells) [42].

As a result, many experimental databases do not recognize such near-duplicates [50, 47].
More importantly, any known material can be disguised as ‘new’ [10] by a slight perturbation
that substantially changes a primitive cell with many more options for periodicity in 3
directions. Simulated materials are even more vulnerable under perturbations because any
iterative optimization always stops at some approximation to a local optimum. These slightly
different approximations can accumulate around the same optimum as in Google’s GNoME
database [33] whose thousands of unexpected duplicates were recently exposed [2, 11].
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The discontinuity of material representations threatens the public trust in science and
motivates the following problem, which is stated for cyclic isometries below for simplicity
but will be solved for 1-periodic sequences under all equivalences in Definition 1.3.

We assume that the input for a 1-periodic sequence S consists of a period l and a motif
of m = |S| points in the slice [0, l) × Rn−1. All complexities are for the real RAM model.

▶ Problem 1.4 (complete and continuous invariants of 1-periodic sequences in R×Rn−1). Find
an invariant I of all 1-periodic sequences in R × Rn−1 satisfying the following conditions.
(a) Completeness : any 1-periodic sequences S, Q ⊂ R × Rn−1 are related by cyclic isometry
(denoted as S ∼= Q) in Definition 1.3 if and only if they have equal invariants I(S) = I(Q).
(b) Reconstruction : any S ⊂ R × Rn−1 is reconstructable from I(S) up to cyclic isometry.
(c) Lipschitz continuity : there is a constant λ > 0 and a metric d on invariant values
such that the metric axioms hold: (1) d(I(S), I(Q)) = 0 if and only if I(S) = I(Q), (2)
d(I(S), I(Q)) = d(I(Q), I(S)), (3) d(I(S), I(Q)) + d(I(Q), I(T )) ≥ d(I(S), I(T )); and if
every point of Q is obtained by perturbing a point of S up to ε, then d(I(S), I(Q)) ≤ λε.
(d) Computability : the invariant I, metric d, and a reconstruction of S from I(S) can be
computed in a time that depends polynomially on the motif size m and dimension n. ■

Due to the first metric axiom, the equality I(S) = I(Q) between complete invariants
can be checked by comparing d(I(S), I(Q)) with 0. Hence condition 1.4(d) for a metric
guarantees a polynomial-time algorithm for detecting a cyclic isometry S ∼= Q. All axioms
in 1.4(c) imply the positivity of a metric d because 2d(a, b) = d(a, b) + d(b, a) ≥ d(a, a) = 0.

The Lipschitz continuity in 1.4(c) is stronger than the classical ε − δ continuity because
a constant λ should be independent of S, ε. Conditions 1.4(b,d) require a polynomial-time
inverse function I−1, which is stronger than the completeness (bijectivity) of an invariant I.

The main contribution is the full solution of Problem 1.4 in Theorem 4.7 by the new
complete invariants and Lipschitz continuous metrics in Definitions 4.2 and 4.5 for all
1-periodic sequences under cyclic and dihedral isometries and rigid motions in R × Rn−1.

2 Related work on isometry invariants and metrics on point sets

For a finite sequence of ordered points, the complete invariant under isometry is the classical
distance matrix [45], see relevant Lemma A.3 based on more recent [15, Theorem 1] in
appendix A, which proves all results. To distinguish mirror images, a sign of orientation can
be enough, but this sign vanishes for all degenerate sets of n + 1 points living in a hyperspace
of dimension n − 1 in Rn. The even harder obstacle is the discontinuity of signs when a
sequence of points passes through a degenerate configuration and changes its orientation.
Though the volume of a simplex changes continuously there, this continuity is not Lipschitz.
In R2, the signed area of a triangle with the base [−x, x] × {0} and top vertex at (0, ε) is εx

and hence changes by 2εx when the vertex degenerates to (0, 0) and then to the symmetric
position (0, −ε). For any fixed ε > 0, the change 2εx can be arbitrarily large without
restrictions on x and hence not Lipschitz continuous as in the sense of condition 1.4(c).

The case of m unordered points T ⊂ Rn is much harder because considering m! distance
matrices is impractical already for m = 4. The case of m = 3 is the SSS theorem saying that
the triangles are isometric if and only if they have the same triple of side lengths considered
up to 3! = 6 permutations. Though all pairwise distances uniquely determine any generic
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Figure 2 Left: sets K = {(±2, 0), (±1, 1)} and T = {(±2, 0), (−1, ±1)} can not be distinguished
by pairwise distances

√
2,

√
2, 2,
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10,
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10, 4. Right: sequences S(r) = {0, r, 2 + r, 4} + 8Z and

Q(r) = {0, 2 + r, 4, 4 + r} + 8Z for 0 < r ≤ 1 have the same Patterson function [38, p. 197, Fig. 2].

set of m points under isometry in Rn [4], Fig. 2 (left) shows non-isometric sets of m = 4
unordered points (from an infinite family) that are indistinguishable by 6 pairwise distances.

If we need only a binary answer, [1, Theorem 1] already in 1988 checked the existence of
an isometry between two m-point sets in Rn in time O(mn−2 log m). The latest algorithm [5]
checks this isometry in time O(m⌈n/3⌉ log m), which becomes O(m log m) in R3 [6]. If we need
only a metric, distances between fixed clouds extend to their rigid classes by minimization
over infinitely many rigid motions [26, 14, 13]. In R2, the time O(m5 log m) [12] for the
Hausdorff distance [24], see approximations in [20]. The Gromov-Wasserstein metrics [31] are
defined for metric-measure spaces also by minimizing over infinitely many correspondences
between points, but cannot be approximated with a factor less than 3 in polynomial time
unless P=NP, see [44, Corollary 3.8] and polynomial algorithms for partial cases in [32, 29].

Mémoli’s work on local distributions of distances [31], also known as shape distributions
[36, 3, 21, 30, 39], for metric spaces is closest to the new invariants of 1-periodic sequences.
These distributions were adapted to any number of periodic directions as Pointwise Distance
Distributions (PDD) and distinguished (together with underlying lattices) any periodic sets
in general position [47, Theorem 4.4] but not infinitely many examples in [40, Fig. 4].

In crystallography, the simpler invariants such as diffraction patterns consisting of all inter-
point distances considered with frequencies had earlier counter-examples even in dimension 1,
see Fig. 2 (right). Patterson [38] visualized any periodic sequence S = {p1, . . . , pm} + lZ ⊂ R
in a circle of a length l but described its isometry classes by the complicated distance array
defined as the anti-symmetric m × m matrix of differences pi − pj for i, j ∈ {1, . . . , m}.
Grünbaum and Moore considered rational-valued periodic sequences given by complex
numbers on the unit circle and proved [22, Theorem 4] that the combinations of k-factor
products of complex numbers up to k = 6 suffice to distinguish all such sequences up to
translation. This approach fixes a period and hence leads to a discontinuous metric.

Atomic vibrations are natural to measure by the maximum deviation of atoms from their
initial positions as in 1.4(c), though the Euclidean metric can be replaced with more general
Minkowski metrics without affecting the Lipschitz continuity. The maximum deviation
of atoms is usually small, but the full sum over infinitely many perturbed points as in
the bottleneck distance dB(S, Q) is often infinite. If we consider only periodic point sets
S, Q ⊂ Rn with the same density (or primitive cells of the same volume), dB(S, Q) becomes
a well-defined wobbling distance [9], which is still discontinuous under perturbations by [47,
Example 2.2]. The Lipschitz continuity and polynomial-time computability remained hard
conditions in Problem 1.4, which were not previously proved for the past complete invariants.

3 Isometry invariants and continuous metrics for finite sequences in Rn

This section studies complete invariants and metrics for isometry classes of finite sequences
of ordered points in Rn, which will be later extended to 1-periodic sequences in R × Rn−1.
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▶ Definition 3.1 (distance matrices DM and CDM). Let T = {p1, . . . , pm} be an ordered
sequence of m points in Rn. In the distance matrix DM(T ) of the size m × m, each element
DMij(T ) is the Euclidean distance |pj − pj | for i, j ∈ {1, . . . , m}, so dii = 0 for i = 1, . . . , m.

In the cyclic distance matrix CDM(T ) of the size (m − 1) × m, each element CDMij(T )
is the Euclidean distance |pj − pi+j | for i ∈ {1, . . . , m − 1} and j ∈ {1, . . . , m}, where all
indices are considered modulo m, for example, pm+1 = p1. ■

Any m = 3 points in Rn with pairwise distances dij have the distance matrix DM = 0 d12 d13
d12 0 d23
d13 d23 0

 and the cyclic distance matrix CDM =
(

d12 d23 d13
d13 d12 d23

)
. CDM(T )

is obtained from DM(T ) by removing the zero diagonal and cyclically shifting each column
so that the first row of CDM(T ) has distances from pi to the next point pi+1 in T .

Figure 3 These sequences are distinguished by their cyclic distance matrices in Example 3.2.

▶ Example 3.2 (cyclic distance matrices). Fig. 3 shows the sequences T1, . . . , T6 ⊂ R2 whose
points are in the integer lattice Z2 so that the minimum inter-point distance is 1. In
each sequence, the points are connected by straight lines in the order 1 → 2 → · · · → m.

CDM(T1) =
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2

 are different

but related by a cyclic shift of columns. This shift of indices in T1 gives a sequence isometric

to T2. Then CDM(T3) =
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2
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√
2

√
2

1 1 1 1

, CDM(T4) =
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√
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2

√
2

√
2

√
2√

5 1 1 1

.

The CDMs of the sets T5, T6 differ only by distances |p1 − p4| = 1 in T5 and |p1 − p4| =
√

5
in the highlighted cells below. If reduce the number m − 1 of rows in CDM to the dimension
n = 2, the smaller matrices fail to distinguish the non-isometric sequences T5 ̸∼= T6.
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√
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√
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√
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√
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√
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√
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.

▶ Definition 3.3 (strength of a simplex and cyclic distances with signs CDS). For the simplex

A on any set of n + 1 points q0, q1, . . . , qn ∈ Rn, the strength is σ(A) = V 2(A)
p2n−1(A) , where

V (A) is the volume of A, p(A) = 1
2

∑
0≤i<j≤n

|qi − qj | is the half-perimeter.

For any sequence T of p1, . . . , pm ∈ Rn and i = 1, . . . , m, let σi(T ) be the strength of the
simplex on the points pi, . . . , pi+n, where all indices are modulo m. Let signi(T ) be the sign
(±1 or 0) of the n × n determinant with the columns pi+1 − pi, pi+2 − pi+1, . . . , pi+n − pi+n−1.
The matrix CDS(T ) of cyclic distances with signs is obtained from CDM(T ) in Definition 3.1
by attaching the (m + 1)-st row sign(T ) = (sign1(T ), . . . , signm(T )). ■
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For a triangle A with 3 pairwise distances a, b, c in R2, Heron’s formula gives the squared
area p(p − a)(p − b)(p − c), where the half-perimeter is p = a + b + c

2 , so the strength is

σ(A) = (p − a)(p − b)(p − c)
p2 . Similarly to the volume V (A), the strength σ(A) vanishes on

degenerate simplices but is Lipschitz continuous [48, Theorem 4.4] with a constant λn, e.g.
λ2 ≤ 2

√
3, while the volume of a simplex is not Lipschitz continuous over the whole Rn.

Because the sign of a determinant discontinuously changes when a point set passes through
a degenerate configuration, this sign will be multiplied by the Lipschitz continuous strength to
get a metric satisfying condition 1.4(c). Section 4 will adapt the matrices from Definitions 3.1
and 3.3 to 1-periodic sequences whose motifs of points should be considered under cyclic
permutations. The cyclic group Cm consists of m permutations on 1, . . . , m generated by the
shift permutation γm : (1, 2, . . . , m) 7→ (2, . . . , m, 1). The dihedral group Dm consists of 2m

permutations generated by γm and the reverse permutation ιm : (1, 2, . . . , m) 7→ (m, . . . , 2, 1).

▶ Lemma 3.4 (actions on vectors and matrices). The shift permutation γm ∈ Cm acts on the
cyclic distance matrix CDM(T ) by cyclically shifting its m columns and keeping all rows.
The reverse permutation ιm ∈ Dm reverses the order of columns and rows in CDM(T ). These
permutations act on the row of signs in Definition 3.3 as γm(s1, s2 . . . , sm) = (s2, . . . , sm, s1)
and ιm(s1, s2 . . . , sm) = (−1)[3n/2](sm, . . . , s2, s1). For any mirror image T̄ of T , the matrix
CDS(T̄ ) is obtained from CDS(T ) by reversing all signs in the last row. Any element of the
groups Cm, Dm acts on any sequence of m numbers as a composition of γm, ιm. ■

Any matrix k × m can be rewritten row-by-row as a vector v ∈ Rkm. For any q ∈ [1, +∞],

the Minkowski norm is ||v||q =
(

km∑
i=1

|vi|q
)1/q

, where the limit case is ||v||∞ = max
i=1,...,km

|vi|.

In the sequel, any power a1/q for a > 0 is interpreted as 1 in the limit case q = +∞.

▶ Definition 3.5 (metrics MCDq, MCSq for finite sequences in Rn). For any Minkowski norm
with a parameter q ∈ [1, +∞] and ordered sequences T, S ⊂ Rn−1 of m points, define the met-

rics MCDq(S, T ) = ||CDM(S) − CDM(T )||q(
m(m − 1)

)1/q
on cyclic distance matrices from Definition 3.1

and MCSq(S, T ) = max
{

MCDq(S, T ), 2
λn

max
i=1,...,m

∣∣signi(S)σi(S) − signi(T )σi(T )
∣∣}. ■

We use the extra factors
(
m(m − 1)

)1/q and 2
λn

in the definition above, where λn is a
Lipschitz constant of the strength σ from [48, Theorem 4.4], only to guarantee the standard
Lipschitz constant 2 for the new metrics. Indeed, perturbing any points up to ε changes the
distance between them up to 2ε. Instead of each maximum in the formula for MCSq(S, T ),
one can consider other metric transforms from [16, section 4.1], for example, sums of metrics.

▶ Theorem 3.6 (solution to the analog of Problem 1.4 for finite sequences). (a) For any sequence
T ⊂ Rn of m points, CDM(T ) and CDS(T ) are complete invariants of T under isometry and
rigid motion in Rn, computable in times O(m2n) and O(m2n + mn3), respectively.

(b) Any sequence T ⊂ Rn of m points can be reconstructed from the complete invariant
matrix CDM(T ) and CDS(T ) up to isometry and rigid motion, respectively, in time O(m3).

(c) For any sequences S, T ⊂ Rn of m points, the distances MCDq(S, T ), MCSq(S, T ) satisfy
all metric axioms and are computable in time O(m2n) and O(m2n + mn3), respectively.

(d) If S is obtained from any finite sequence T ⊂ Rn by perturbing every point up to
Euclidean distance ε, then MCDq(S, T ) ≤ 2ε and MCSq(S, T ) ≤ 2ε for any q ∈ [1, +∞]. ■
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4 Isometry invariants and metrics for 1-periodic sequences in R × Rn−1

The invariants and metrics from section 3 will be used for a motif of a 1-periodic sequence S

projected to the value factor Rn−1. To solve Problem 1.4, we first resolve the discontinuity
of a period under perturbations of S by considering projections to the time factor R.

▶ Definition 4.1 (time shift TS). Let S ⊂ R×Rn−1 be a 1-periodic sequence with a period l

and a motif M of points p1, . . . , pm, which have ordered time projection t(p1) < · · · < t(pm)
in [0, l) under t : R × Rn−1 → R, see Definition 1.1. Set di = t(pi+1) − t(pi) for i = 1, . . . , m,
t(pm+1) = t(p1) + l. The time shift of the pair (motif,period) is TS(M ; l) = (d1, . . . , dm). ■

The sequences S2 = {0, 1} + 3Z and 3 − S2 = {0, 2} + 3Z are related by translation but
have different time shifts TS({0, 1}; 3) = (1, 2) and TS({0, 2}; 3) = (2, 1). To get isometry
invariants, these shifts are considered modulo cyclic or dihedral permutations below.

▶ Definition 4.2 (cyclic and dihedral invariants under isometry and rigid motion). For any
1-periodic sequence S = M + le⃗1Z ⊂ R × Rn−1 with a minimum motif M of m points, let
v(M) ⊂ Rn−1 be the image of M under the value projection v : R × Rn−1 → Rn−1.

The cyclic and dihedral isometry invariants CI(S) and DI(S) are the classes of the
pair (TS(M ; l), CDM(v(M))) considered up to permutations γ from the groups Cm, Dm,
respectively, acting simultaneously on the time shift TS(M ; l) and the matrix CDM(v(M)).

The cyclic and dihedral rigid invariants CR(S) and DR(S) are the classes of the pair
(TS(M ; l), CDS(v(M))) considered up to permutations γ from the groups Cm, Dm, respect-
ively, acting simultaneously on the time shift TS(M ; l) and the matrix CDS(v(M)). ■

The matrices CDM, CDS are used for the projected motif v(M) ⊂ Rn−1 and do not
depend on a period l, because a shift along the time direction e⃗1 keeps the value projection.

In the partial case n = 1, when a periodic sequence S = {p1, . . . , pm} + lZ is in the line
R, Definition 4.2 simplifies to a single time shift obtained by lexicographic ordering.

Recall that the lexicographic order on vectors is defined so that (d1, . . . , dm) < (d′
1, . . . , d′

m)
if d1 = d′

1, . . . , di = d′
i for some 0 ≤ i < m, where i = 0 means no identities, and di+1 < d′

i+1.

▶ Definition 4.3 (time invariants CT, DT). Let S = {p1, . . . , pm} + lZ ⊂ R be a periodic
sequence with a minimum period l > 0. Set di = pi+1 − pi for i = 1, . . . , m, where
pm+1 = p1+l. The cyclic and dihedral time invariants CT(S), DT(S) are the lexicographically
smallest lists obtained from (d1, . . . , dm) by the action of Cm, Dm, respectively. ■

The periodic sequences S = {0, 1, 3} + 6Z and Q = 6 − S = {0, 3, 5} + 6Z are related by
reflection x 7→ 6 − x and not by translation. Their time shifts are TS({0, 1, 3}; 6) = (1, 2, 3)
and TS({0, 3, 5}; 6) = (3, 2, 1). So the dihedral time invariants are equal to DT = (1, 2, 3),
but their cyclic time invariants differ: CT(S) = (1, 2, 3) ̸= (1, 3, 2) = CT(Q).

Though the time invariants from Definition 4.3 can be proved complete for periodic
sequences in R, Example 4.4 and Fig. 4 show their discontinuity under tiny perturbations.

▶ Example 4.4. The periodic sequence S0 = {0, 1, 3, 4} + 7Z has two perturbations S±ε =
{0, 1±ε, 3±ε, 4}+7Z for any small ε > 0. Rewriting the time shifts TS({0, 1−ε, 3−ε, 4}; 7) =
(1−ε, 2, 1 +ε, 3) and TS({0, 1 +ε, 3 +ε, 4}; 7) = (1 +ε, 2, 1−ε, 3) in increasing order does not
make them close, because the minimum distance 1 − ε is followed by the different distances
2 < 3 in the nearly identical S±ε for any ε > 0, see Fig. 4 (left). This discontinuity will be
resolved by minimizing over cyclic permutations but there is one more obstacle below. ■
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Figure 4 Left: the nearly identical sequences S±ε = {0, 1 ± ε, 3 ± ε, 4} + 7Z have distant time
invariants from Definition 4.1, see Example 4.4. Right: the sequence Z and its perturbation Zε

have incomparable time shifts TS({0}; 1) = (1), TS({0, 1 − ε}; 2) = (1 − ε, 1 + ε) of different lengths.

It seems natural to always use a minimum period l > 0 of S = {p1, . . . , pm} + le⃗1Z ⊂
R × Rn−1. However, the time shift TS = (d1, . . . , dm) of a fixed size m cannot be directly
used for comparing sequences that have different sizes of motifs, see Fig. 4 (right).

Definition 4.5 defines continuous metrics after extending given motifs to a common size.

▶ Definition 4.5 (cyclic and dihedral metrics under isometry and rigid motion). For any
1-periodic sequences S = MS + lS e⃗1Z and Q = MQ + lQe⃗1Z in R × Rn−1, let m =
lcm(|MS |, |MQ|) be the lowest common multiple of their motif sizes. For the integers
kS = m

|MS |
, kQ = m

|MQ|
, the extended motifs defined as kSMS =

⋃
i=1,...,kS

(
MS + ilS e⃗1

)
,

kQMQ =
⋃

i=1,...,kQ

(
MQ + ilQe⃗1

)
have the same number kS |MS | = m = kQ|MQ| of points.

Any permutation γ from Cm, Dm acts on the projected motif v(kQMQ) ⊂ Rn−1 as in
Lemma 3.4. For any Minkowski norm with q ∈ [1, +∞], the cyclic and dihedral isometry
metrics are CIMq(S, Q) = min

γ∈Cm

max{dt, dv} and DIMq(S, Q) = min
γ∈Dm

max{dt, dv}, where

dt = m−1/q
∣∣∣∣TS(kSMS ; kSlS)−TS(γ(kQMQ); kQlQ)

∣∣∣∣
q
, dv = MCDq

(
v(kSMS), γ(v(kQMQ))

)
.

The cyclic and dihedral rigid metrics CRMq, DRMq are defined by the same formulae as
CIMq, DIMq above after replacing MCDq with the metric MCSq from Definition 3.5. ■

In the limit case q = +∞, any factor a±1/q for a > 0 is interpreted as lim
q→+∞

a±1/q = 1.
In Definition 4.5, the extended periods kSlS and kQlQ can be different. For simplicity, the
metrics MCDq, MCSq were written via projected motifs as in Definition 3.5 but will be
computable via the complete invariants (under relevant equivalences) from Definition 4.2.

In the partial case n = 1, the projected motifs are empty, so the cases of rigid motion
and isometry in R0 trivially coincide. In both cases, the metrics are obtained by minimizing
only the differences dt between time shifts under cyclic and dihedral permutations.

▶ Example 4.6. The periodic sequences S = {0, 1} + 3Z and Q = {0, 1, 3} + 6Z have motifs
MS = {0, 1} and MQ = {0, 1, 3} of different sizes mS = 2 and mQ = 3 whose lowest common
multiple is m = 6. In the notations of Definition 4.5, we get kS = m

|MS |
= 3, kQ = m

|MQ|
= 2.

The extended motifs and periods are 3MS = {0, 1, 3, 4, 6, 7}, 3lS = 9, 2MQ = {0, 1, 3, 6, 7, 9},
2lQ = 12. Then TS(3MS ; 9) = (1, 2, 1, 2, 1, 2) and TS(2MQ; 12) = (1, 2, 3, 1, 2, 3). Any
cyclic or dihedral permutation of TS(3MS ; 9) relative to TS(2MQ; 12) gives the maximum
component-wise distance |1 − 3| = 2, so CIM+∞(S, Q) = 2 = DIM+∞(S, Q). ■

▶ Theorem 4.7 (solution to Problem 1.4 for 1-periodic sequences). (a) For any 1-periodic
sequence S ⊂ R × Rn−1 with a motif of m points, CI(S), DI(S) from Definition 4.2 are
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complete invariants under cyclic and dihedral isometry in R × Rn−1, respectively, and
computable in time O(m3n). The invariants CR(S), DR(S) are complete under cyclic and
dihedral rigid motion in R × Rn−1, respectively, and computable in time O(m3n + m2n3).

(b) Any 1-periodic sequence S ⊂ R × Rn−1 with a motif of m points can be reconstructed
from its complete invariant up to a relevant equivalence from part (a) in time O(m3n).

(c) The metrics in Definition 4.5 remain invariant if any 1-periodic sequence S = M + le⃗1Z
is given by its extended motif kM and period kl for any integer k > 0. For any 1-periodic
sequences S, Q ⊂ R × Rn−1 with a lowest common multiple m of their motifs sizes, the
metrics CIMq, DIMq, CRMq, DRMq in Definition 4.5 satisfy all axioms and are computable
in times O(m3n) and O(m3n + m2n3) for isometry and rigid motion, respectively.

(d) Let Q denote a 1-periodic sequence S ⊂ R × Rn−1 after perturbing every point of S up
to some Euclidean distance ε that is smaller than a half-distance between any points of t(S)
and of t(Q). Then CIMq(S, T ), DIMq(S, Q), CRMq(S, Q), DRMq(S, Q) ≤ 2ε. ■

▶ Example 4.8 (challenging 1-periodic sequences). The infinite family of counter-examples
in [40, Fig. 4] to the completeness of past distance-based invariants includes the pairs of
the 1-periodic sequences A± ⊂ R × R2 with a period l > 0 and 6-point motifs M+ =
{W ′, C+, V, W, C ′

+, V ′} and M− = {W ′, C−, V, W, C ′
−, V ′}, where V = (vx, vy, 0), W =

( l
2 , wy, wz), C± = ( l

4 , cy, ±cz), and l, wy, wz, cy, cz > 0, vx, vy ∈ [0, l
2 ] are free parameters.

Figure 5 These periodic sequences A± ⊂ R × R2 from [40, Fig. 2] have identical past invariants.

Any point with a dash is obtained by g(x, y, z) = (x + l
2 , y, −z). The time projections are

identical: t(M±) = (0, l
4 , vx, l

2 , 3l
4 , l

2 + vx). Assuming that vx ∈ ( l
4 , l

2 ) as in Fig. 5, the time
shifts are TS(M±; l) = ( l

4 , vx − l
4 , l

2 − vx, l
4 , vx − l

4 , l
2 − vx). The ordered value projections

are v(M±) = {(wy, −wz), (cy, ±cz), (vy, 0), (wy, wz), (cy, ∓cz), (vy, 0)}. The cyclic distance
matrices of M+ and M− are on the left and right hand sides below, respectively: d11 d12 d21 d11 d12 d21

d21 d22 d12 d21 d22 d12

2|wz| 2|cz| 0 2|wz| 2|cz| 0

 ̸=

 d22 d12 d21 d22 d12 d21

d21 d11 d12 d21 d11 d12

2|wz| 2|cz| 0 2|wz| 2|cz| 0

.
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The differences are highlighted: d11 =
√

(wy − cy)2 + (wz +cz )2, d12 =
√

(cy − vy)2 + c2
z,

d22 =
√

(wy − cy)2 + (wz −cz )2, d21 =
√

(wy − vy)2 + w2
z . The matrix difference has the

Minkowski norm ||CDM(M+) − CDM(M−)||∞ = |d11 − d22| > 0 unless cz = 0 or wz = 0. If
cz = 0, A± are identical. If wz = 0, then A± are isometric by g(x, y, z) = (x + l

2 , y, −z).

If both cz, wz ̸= 0, then CIM+∞(A+, A−) is obtained by minimizing over 6 cyclic
permutations γ ∈ C6. The trivial permutation and the shift by 3 positions give |d11 − d12|.
Any other permutation gives dt = max{vx − l

4 , l
2 − vx} from comparing TS(M+; l) with

γ(TS(M−; l)) and dv = max{|a − b|} maximized for all pairs of a, b ∈ {d11, d12, d21, d22}.

In all cases, the metric is positive: CIM+∞(A+, A−) ≥ |d11−d22| > 0. Hence the invariant
CI from Definition 4.2 distinguished these challenging 1-periodic sequences A+ ̸∼= A−. ■

5 Discussion: the importance of Lipschitz continuity for data integrity

This paper rigorously stated Problem 1.4 to design complete invariants and Lipschitz con-
tinuous metrics for 1-periodic sequences in R × Rn−1 for any high-dimension n ≥ 1. Simpler
versions of this problem were previously studied mostly for finitely many points. Even in the
simpler case of ordered points, the Lipschitz continuity around degenerate configurations
needs the recent strength of a simplex, so Theorem 3.6 is new to the best of our knowledge.

The 1-periodic case is much harder because a minimum period arbitrarily scales up
under almost any perturbation of points within the space of 1-periodic sequences. Infinite
non-periodic sequences are currently studied through finite subsets, which we considered
above, but even the 1-periodic case remained open. Main Theorem 4.7 solved Problem 1.4
for the four equivalences that maintain all distances but can change orientation in a factor
of the product R × Rn−1. All invariants and metrics easily extend to compositions of these
equivalences with uniform scaling in any of the factors. It suffices to normalize all distances
and strengths by the diameter of a finite set or a minimum period l of a 1-periodic sequence.

Though the invariants in Definition 4.2 are introduced as classes under cyclic or dihedral
permutations γ, any 1-periodic sequence S ⊂ R × Rn−1 can be reconstructed from any
representative time shift TS and a suitable matrix (CDM or CDS) of a finite motif, which
requires less space in computer memory. Applying permutations γ is needed only for metric
computations in Definition 4.5. Example 4.8 illustrates that the new invariants and metrics
can be manually computed even for infinitely many periodic sequences in [40, Fig. 4] that
were not distinguishable by generically complete past invariants such as PDD [47].

The Lipschitz continuity is practically important for detecting near-duplicates that have
very different periods (primitive cells) because any known material can be easily perturbed
with an extended motif and claimed as ‘new’ especially if some atoms were artificially replaced.
Such duplicates were found in the well-curated and world’s largest collection of real materials
[46] CSD (Cambridge Structural Database) because past comparisons based on finite subsets
are slow and unreliable [50]. As a result, five journals are investigating the underlying
publications for data integrity [47, section 6]. The simulated data can be much worse because
iterative optimizations are expected to approximate the same local optima on different runs,
see [2, Tables 1-2]. Hence the Lipschitz continuity helps maintain the public trust in science.

The polynomial-time complexities in Theorems 3.6 and 4.7 suffice in practice because
the new invariants form a hierarchy from the easy and fast invariants to the slower but
complete. For example, we should first compare real 1-periodic sequences by their time shifts
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TS in linear time O(m) and continue below only for pairs with very close time shifts. After
computing the matrix CDM in time O(m2) for a smaller number of potential near-duplicates,
we compare simpler subinvariants such as the first rows of CDMs (distances to the next
neighbor in time) or column averages still in time O(m2) by applying O(m) permutations
from Cm or Dm to vectors of length m. Such a hierarchical filtering was done for 200+
billion pairwise comparisons of all periodic materials in the CSD within two days on a modest
desktop [47], though the underlying Earth Mover’s Distance [43] has a cubic complexity.

Problem 1.4 provides a practical alternative to artificial networks, which ‘horizontally
explore’ continuously infinite data spaces through finite datasets, which are discrete samples
of measure 0. Solutions to analogs of Problem 1.4 will ‘fly vertically’ to map continuous data
spaces from a ‘satellite’ point of view as in [8, 49]. Indeed, 1-periodic sequences and isometries
can be replaced with any real objects and equivalences but the conditions of completeness,
reconstruction, Lipschitz continuity, and polynomial-time computability remain essential.

The implementation of the new invariants and metrics can be released in October 2024.
We thank all reviewers in advance for their valuable time and helpful suggestions.

A Appendix: detailed proofs of Lemma 3.4 and Theorems 3.6, 4.7

▶ Example A.1 (strengths and signs). For the sequence T1 in Fig. 3 with the points p1 = (0, 0),
p2 = (0, 1), p3 = (1, 0), p4 = (1, 1), the first 2 × 2 determinant with the columns p2 − p1 =(

0
1

)
and p3 − p2 = (1, −1) is det

(
0 1
1 −1

)
has sign −1. The further determinants

for i = 2, 3, 4 are det
(

1 1
−1 0

)
= +1, det

(
1 −1
0 −1

)
= −1, det

(
−1 1
−1 0

)
= +1, so

sign(T1) = (−1, +1, −1, +1). All triangles on 4 triples pi, pi+1, pi+2 for i = 1, 2, 3, 4 have the
sides 1, 1,

√
2, half-perimeter p = 1 + 1√

2 , area V = 1
2 , and strength σ = 1√

2(1+
√

2)3 . ■

Table 1 Acronyms and references for the new invariants and metrcis from sections 3 and 4.

CDM(T ) Cyclic Distance Matrix of a finite sequence T ⊂ Rn Definition 3.1
CDS(T ) matrix of Cyclic Distances and Signs of a finite sequence T ⊂ Rn Definition 3.3
MCDq Metric on Cyclic Distance matrices (CDM) Definition 3.5
MCSq Metric on matrices of Cyclic distances and Signs (CDS) Definition 3.5
TS(M ; l) Time Shift for a motif M and period l of a 1-periodic sequence Definition 4.1
CI(S) Cyclic Isometry invariant of a 1-periodic sequence S ⊂ R × Rn−1 Definition 4.2
DI(S) Dihedral Isometry invariant of a 1-periodic sequence S ⊂ R × Rn−1 Definition 4.2
CR(S) Cyclic Rigid invariant of a 1-periodic sequence S ⊂ R × Rn−1 Definition 4.2
DR(S) Dihedral Rigid invariant of a 1-periodic sequence S ⊂ R × Rn−1 Definition 4.2
CI(S) Cyclic Isometry invariant of a 1-periodic sequence S ⊂ R × Rn−1 Definition 4.2
DI(S) Dihedral Isometry invariant of a 1-periodic sequence S ⊂ R × Rn−1 Definition 4.2
CIMq Cyclic Isometry Metric between 1-periodic sequences in R × Rn−1 Definition 4.5
DIMq Dihedral Isometry Metric between 1-periodic sequences in R × Rn−1 Definition 4.5
CRMq Cyclic Rigid Metric between 1-periodic sequences in R × Rn−1 Definition 4.5
DRMq Dihedral Rigid Metric between 1-periodic sequences in R × Rn−1 Definition 4.5

▶ Example A.2 (metric MCDq). For any q ∈ [1, +∞), we use cyclic distance matrices from
Example 3.2 to compute MCDq(T1, T3) = ( 2

3 )1/q(
√

2 − 1), MCDq(T3, T4) = ( 1
6 )1/q(

√
5 − 1),
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and MCDq(T1, T4) = ( 1
2 (

√
2 − 1)q + 1

6 (
√

5 −
√

2)q)1/q. The triangle inequality holds for q ≥ 1
as follows:

(
MCDq(T1, T3) + MCDq(T3, T4)

)q =
(
( 2

3 )1/q(
√

2 − 1) + ( 1
6 )1/q(

√
5 − 1)

)q ≥(
( 1

2 )1/q(
√

2 − 1) + ( 1
6 )1/q(

√
5 −

√
2)

)q ≥ 1
2 (

√
2 − 1)q + 1

6 (
√

5 −
√

2)q =
(
MCDq(T1, T4)

)q

due to (a + b)q ≥ aq + bq for a, b > 0 and q ≥ 1. For q = +∞, the inequality becomes
(
√

2 − 1) + (
√

5 − 1) ≥
√

5 −
√

2. Finally, T5 ̸∼= T6 have MCDq(T5, T6) = 21/q(
√

5 − 1). ■

Proof of Lemma 3.4. The shift permutation γm increments each index 1, 2, . . . , m (modulo
m), so the columns of CDM(T ) are shifted in the same way, also the signs s(T ), while row
indices are differences between point indices and remain the same under γm.

The reverse permutation ιm reverses the order of points and hence the columns of
CDM(T ). The rows are also reversed under ιm because the next point for pi in the reversed
sequence pm, . . . , p1 is the previous point of pi in the original list. Also, under ιm, the n

difference vectors pi+1 − pi, pi+2 − pi+1, . . . , pi+n − pi+n−1 reverse all their n signs order and
also the order. The reverse permutation (s1, . . . , sn) 7→ (sn, . . . , 1) decomposes into [n/2]
transpositions, where [n/2] is the largest integer not greater than n/2. Hence the n × n

determinant under ιm changes its sign by the factor (−1)n(−1)[n/2] = (−1)[3n/2].

Any mirror reflection in Rn keeps all distances and reverses all signs in the row sign(T ). ◀

The affine dimension 0 ≤ aff(A) ≤ n of a point set A = {p1, . . . , pm} ⊂ Rn is the
maximum dimension of the vector space generated by all inter-point vectors pi − pj , i, j ∈
{1, . . . , m}. The isometry invariant aff(A) is independent of an order of points. Any 2 distinct
points have aff = 1. Any 3 points that are not in the same straight line have aff = 2.

Lemma A.3 provides a criterion for a matrix to be realizable by squared distances in Rn.

▶ Lemma A.3 (distance realization). (a) A symmetric m × m matrix of sij ≥ 0 with sii = 0
is realizable as a matrix of squared distances between points p0 = 0, p1, . . . , pm−1 ∈ Rn if
and only if the (m − 1) × (m − 1) matrix gij = s0i + s0j − sij

2 has non-negative eigenvalues.

(b) If the condition in (a) holds, aff(0, p1, . . . , pm−1) equals the number k ≤ m − 1 ≤ n of
positive eigenvalues. Then gij = pi ·pj define the Gram matrix G of the vectors p1, . . . , pm−1 ∈
Rn, which are reconstructable in time O(m3) up to an orthogonal map in Rn.

Proof of Lemma A.3. (a) We extend [15, Theorem 1] to the case m < n + 1 and also justify
the reconstruction of p1, . . . , pm−1 in time O(m3) uniquely in Rn up to an orthogonal map
from the orthogonal group O(n).

The part only if ⇒. Let a symmetric matrix S consist of squared distances between
points p0 = 0, p1, . . . , pm−1 ∈ Rn. For i, j = 1, . . . , m − 1, the matrix with the elements

gij = s0i + s0j − sij

2 =
p2

i + p2
j − |pi − pj |2

2 = pi · pj

is the Gram matrix, which can be written as G = P T P , where the columns of the n × (m − 1)
matrix P are the vectors p1, . . . , pm−1 . For any vector v ∈ Rm−1, we have

0 ≤ |Pv|2 = (Pv)T (Pv) = vT (P T P )v = vT Gv.

Since the quadratic form vT Gv ≥ 0 for any v ∈ Rm−1, the matrix G is positive semi-definite
meaning that G has only non-negative eigenvalues by [25, Theorem 7.2.7].

The part if ⇐. For any positive semi-definite matrix G, there is an orthogonal matrix B

such that BT GB = D is the diagonal matrix, whose m−1 diagonal elements are non-negative
eigenvalues of G. The diagonal matrix

√
D consists of the square roots of eigenvalues of G.
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(b) The number of positive eigenvalues of G equals the dimension k = aff({0, p1, . . . , pm−1})
of the subspace in Rn linearly spanned by p1, . . . , pm−1. We may assume that all k ≤ n

positive eigenvalues of G correspond to the first k coordinates of Rn. Since BT = B−1, the
matrix G = BDBT = (B

√
D)(B

√
D)T becomes the Gram matrix of the columns of B

√
D.

These columns become the reconstructed vectors p1, . . . , pm−1 ∈ Rn.
If there is another diagonalization B̃T GB̃ = D̃ for B̃ ∈ O(n), then D̃ differs from D by a

permutation of eigenvalues, which is realized by an orthogonal map, so we set D̃ = D. Then
G = B̃DB̃T = (B̃

√
D)(B̃

√
D)T is the Gram matrix of the columns of B̃

√
D.

The new columns are obtained from the previously reconstructed vectors p1, . . . , pm−1 ∈
Rn after multiplying by the orthogonal matrix BB̃T . Hence the reconstruction is unique up
to an orthogonal transformation from O(n). Computing eigenvectors p1, . . . , pm−1 needs a
diagonalization of G in time O(m3), see [41, section 11.5]. ◀

Proof of Theorem 3.6. (a,b) Any isometry in Rn maintains all interpoint distances and
hence preserves CDM(T ). Any rigid motion (orientation-preserving isometry) in Rn preserves
the signs of n×n determinants, hence the row sign(T ) and matrix CDS(T ) from Definition 3.3.
Each of O(m2) Euclidean distances in CDM(T ) depends on n coordinates and needs O(n)
time. Each of m signs in the row sign(T ) of CDS(T ) needs O(n3) time by Gaussian elimination.
So CDM(T ), CDS(T ) are computable in times O(m2n) and O(m2n + mn3), respectively.

For any finite sequence T = (p1, . . . , pm), the cyclic distance matrix CDM(T ) uniquely
determines the classical distance matrix DM(T ) and hence (after shifting p1 to the origin)
the Gram matrix of scalar products pi · pj for 1 < i, j ≤ m, which suffices to reconstruct
T uniquely up to isometry by Lemma A.3(b) in time O(m3). If CDS(T ) contains at least
one non-zero sign, then CDS(T̄ ) ̸= CDS(T ), so T is distinguished from its mirror image T̄

and hence uniquely determined from CDS(T ) up to rigid motion in Rn. If the row sign(T )
consists of zeros, then T is contained within an (n − 1)-dimensional subspace of Rn. Indeed,
sign1(T ) = 0 means that the first n + 1 points pn+1 is in the (n − 1)-dimensional subspace S

that is affinely spanned by p1, . . . , pn. Then by induction on i = 2, . . . , m − n, signi(T ) = 0
implies that pn+i is in the same subspace S. Within S, the mirror images T̄ and T with
respect to any (n−2)-dimensional subspace L ⊂ S are related by a high-dimensional rotation
around L in Rn, so T is uniquely determined by CDS(T ) also in any degenerate case.

(c) The metric axioms for the distances MCDq(S, T ), MCSq(S, T ) follow from these axioms
for the Minkowski metric [18]. Taking the maximum respects the axioms as a metric transform
by [16, section 4.1]. After computing the invariants CDM(S) and CDM(T ) in time O(m2n),
the metric MCDq needs only O(n) extra time. Each of 2m strengths for the metric MCSq

needs time O(n3) for an n × n determinant, hence only O(mn3) extra time, followed by O(m)
time to take the maxima in the formula for MCSq from Definition 3.5.

(d) We are given a bijection β : T → S that shifts every point up to ε in Euclidean
distance. Then the distances between any points pi, pj ∈ T and their ε-close images
β(pi), β(pj) ∈ S differ by at most 2ε. The matrix CDM contains m(m − 1) distances. By

Definition 3.5, MCDq(S, T ) = ||CDM(S) − CDM(T )||q(
m(m − 1)

)1/q
≤

(
m(m − 1)(2ε)q

)1/q(
m(m − 1)

)1/q
= 2ε. The

Lipschitz continuity |σi(S) − σi(T )| ≤ λnε by [48, Theorem 4.4] was proved in [27]. If
signi(S)signi(T ) ≥ 0, then 2

λn
|signi(S)σi(S) − signi(T )σi(T )

∣∣ = 2
λn

|σi(S) − σi(T )| ≤ 2ε. If
signi(S) = −signi(T ), the straight-line deformation of the points pj(t) = (1 − t)pj + tβ(pj),
t ∈ [0, 1], j = i, . . . , i + n, passes through a degenerate subsequence A with σ = 0. Each pj(t)
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shifts from T by at most tε to the degenerate subsequence A, then by at most (1 − t)ε to S.
The Lipschitz continuities |σi(S) − 0| ≤ λntε and |0 − σi(T )| ≤ λn(1 − t)ε imply that

2
λn

|signi(S)σi(S) − signi(T )σi(T )
∣∣ = 2

λn
(σi(S) + σi(T )) ≤ 2

λn
(λn(1 − t)ε + λntε) = 2ε.

The maxima in Definition 3.5 guarantee that MCDq(S, T ) ≤ 2ε as required. ◀

Lemma A.4 was inspired by [7, Propositions 8.5(2) and 8.6], which were proved briefly.

▶ Lemma A.4 (metric on a quotient space under action). Let a finite group G act on a space X

with a metric dX by isometries so that dX(f(a), f(b)) = dX(a, b) for any a, b ∈ X and f ∈ G.
Then the quotient space X/G consisting of equivalence classes [a] = {f(a) ∈ X | f ∈ G} has
the quotient distance d([a], [b]) = min

f∈G
dX(f(a), b) satisfying all metric axioms. ■

Proof. All axioms for d follow from the axioms for dX . The coincidence axiom means that
d([a], [b]) = min

f∈G
dX(f(a), b) = 0 if and only if dX(f(a), b) = 0 for some f ∈ G, so f(a) = b

and hence [a] = [b]. The symmetry axiom follows by using the inverse operation in G, i.e.
d([a], [b]) = min

f∈G
dX(f(a), b) = min

f∈G
dX(b, f(a)) = min

f−1∈G
dX(f−1(b), a) = d([b], [a]).

To prove the triangle inequality d([a], [b]) + d([b], [c]) ≥ d([a], [c]), take f, g ∈ G such
that d([a], [b]) = dX(f(a), b) and d([b], [c]) = dX(g(b), c). Then d([a], [b]) + d([b], [c]) =
dX(g◦f(a), g(b))+dX(g(b), c) ≥ dX(g◦f(a), c) ≥ min

h∈G
dX(h(a), c) = d([a], [c]) as required. ◀

Proof of Theorem 4.7. (a,b) Any cyclic and dihedral isometry and rigid motion of R ×
Rn−1 from Definition 1.3 preserve the class of the time shift TS, which is the vector of
differences between successive time projections in Definition 4.1, under the actions of Cm, Dm,
respectively. For a motif of m points, TS needs only O(m) time. Hence the invariance of
CI(S), DI(S), CR(S), DR(S) and their times follow from Theorem 3.6(a) for the projected
motif v(M) ⊂ Rn−1. The completeness and reconstruction in time O(m3n) follow from
Theorem 3.6(b), which reconstructs v(M) ⊂ Rn−1 uniquely up to a relevant equivalence
after assigning the time projections 0, d1, . . . , dm−1 to the ordered points p1, . . . , pm ∈ v(M),
respectively, where TS = (d1, . . . , dm) is the correspondingly ordered time shift.

(c) Let a 1-periodic sequence S = M + le⃗1Z be given by its extended motif kM and period
kl for any integer k > 0. The time shift TS(kM ; kl) is a concatenation of m identical vectors
TS(M ; l). The projected motif v(kM) ⊂ Rn−1 is the set of k identical copies of v(M).

Hence the km× (km−1) matrix CDM(v(kM)) consists of k2 identical m(m−1) matrices
CDM(v(M)) separated by extra k − 1 rows of zeros, which represent the zero distances from
each point p ∈ v(M) to its other k − 1 copies in v(kM) at the same location in Rn−1.

Any cyclic permutation γ ∈ Cm defined to the extended permutation kγ ∈ Ckm that
shifts all km elements by the same number of positions as γ. Applying such an extended
permutation γ to a block vector TS(kM ; kl) or a block matrix CDM(v(kM)) described
above is equivalent to applying γ to the original vector or matrix, and then extending the
output by the factor k. In other words, the minimization of differences with a block vector
or a block matrix over km cyclic permutations from the larger group Ckm is equivalent to
the minimization of the differences with a smaller original vector or a matrix over k cyclic
permutations from Cm. Then the metric CIM is invariant under any extension of a motif
and a period. The same arguments apply to dihedral permutations and matrix CDS.
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Hence, to justify the metric axioms below, we can assume that all involved 1-periodic
sequences are scaled up to a common size of their extended motifs. The auxiliary distances
dt, dv in Definition 4.5 are standard Minkowski metrics. Taking the maximum of several
metrics respects all axioms as a standard metric transform [16, section 4.1]. The final
operation of distance minimization over the actions of the groups Cm, Dm allows us to
consider the outputs as quotient distances, which satisfy the metric axioms by Lemma A.4.

Due to the minimization by the actions of the groups Cm, Dm, each of the metrics
CIMq, DIMq, CRMq, DRMq requires only an extra factor O(m) in comparison with the times
O(m2n) and O(m2n + mn3) from Theorem 3.6(c) for the relevant metrics MCDq (under
isometry) and MCSq (under rigid motion) between the projected motifs in Rn−1. Indeed, the
Minkowski metric between time shifts adds only an additive time O(m), which is dominated
by the time O(m2n) for the metric between cyclic distance matrices CDM.

(d) Any perturbation of points up to Euclidean distance ε in R × Rn−1 changes their time
projections by at most ε. Then any difference between successive time projections changes
by at most 2ε, which is less than the distance between any successive points in the time
projection t(S) and in the time projection t(Q). Hence there is a bijection S → Q respecting
the time order of all points. When computing the Minkowski metric between the time shifts
for the identity permutation γ = id, the maximum deviation 2ε emerges m times and hence
leads to the overall factor (2ε)m1/q. The extra factor m−1/q in the formula for the distance
b in Definition 4.5 gives the final factor 2ε. The Lipschitz constant 2 is guaranteed for the
metrics MCDq, MCSq by Theorem 3.6(a). The minimization over permutations γ from Cm

or Dm can make the final distance only smaller. So the final Lipschitz contant is 2. ◀
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