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Abstract. 2D images often contain irregular salient features and inter-
est points with non-integer coordinates. Our skeletonization problem for
such a noisy sparse cloud is to summarize the topology of a given 2D
cloud across all scales in the form of a graph, which can be used for
combining local features into a more powerful object-wide descriptor.

We extend a classical Minimum Spanning Tree of a cloud to a Homo-
logically Persistent Skeleton, which is scale-and-rotation invariant and
depends only on the cloud without extra parameters. This graph

(1) is computable in time O(n logn) for any n points in the plane;

(2) has the minimum total length among all graphs that span a 2D cloud
at any scale and also have most persistent 1-dimensional cycles;

(3) is geometrically stable for noisy samples around planar graphs.
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1 Introduction: problem and overview

Pixel-based 2D images often contain salient features represented as points with
non-integer coordinates. The resulting unstructured set is an example of a point
cloud C, formally a finite metric space with pairwise distances between points.

The important problem in low level vision is to extract a meaningful structure
from a given irregular cloud C. The traditional approach is to select a scale
parameter, say a radius or the number of neighbors, and build a neighborhood
graph. However, a real image may not have a single suitable scale parameter
and we need to combine features found at multiple scales. This paper solves the
skeletonization problem in its hardest form without any input parameters.

Parameterless skeletonization for sparse clouds. Given only an un-
structured cloud C ⊂ R2 of points with any real coordinates, find a quickly
computable structure that provably represents the topology of C at all scales.

Our solution is a ‘homological’ extension of a classical Minimum Spanning
Tree MST(C) of a cloud C to a Homologically Persistent Skeleton HoPeS(C)
that describes 1-dimensional cycles hidden in C over all possible scales α.



In section 2 we explain motivations for building HoPeS(C) and give a high
level description of our contributions. In section 3 we compare our method with
related work. In sections 4–5 we prove that HoPeS(C) or its subgraphs are

• computable in time O(n log n) for a cloud C ⊂ R2 of n points (Lemma 3)

• invariant up to rotations and uniform scale transformations (Lemma 4)

• optimal among all graphs capturing cycles of C at any scale (Theorem 5)

• stable under perturbations of samples C of graphs G ⊂ R2 (Corollary 8).

Fig. 1. Top: a cloud C of feature points. Bottom: HoPeS′(C) and its simplification.

Fig. 1 shows the cloud C of n = 7830 feature points obtained by thresholding
a real image in the top row, see details in section 6. The cloud C is the only input
for producing the derived skeleton HoPeS′(C) in the bottom row, where we kept
only the most persistent cycle. The last picture of Fig. 1 is a simplified version
of HoPeS′(C) after removing short branches, see Definition 6. So HoPeS′(C)
provides a best ‘guess’ about the global topology of C in time O(n log n).

2 Our contributions and motivations of HoPeS(C)

Our parameterless skeletonization is based on persistent homology, which is the
flagship method of Topological Data Analysis [10]. The key idea is to summarize
topological features of data over all possible scales. A topological invariant that
persists over a long interval of the scale is a true feature of the data, while
noisy features have a short life span (a low persistence). The resulting persistent
invariants are provably stable under noise, see Theorem 17 in Appendix A.

Fig. 2 shows a cloud C on the integer lattice for simplicity, though our con-
structions work for any real coordinates. For any set C ⊂ R2 and α > 0, the
α-offset Cα consists of all points in R2 that are at most α away from C. Here α
is the scale parameter (radius or width) of the α-offset Cα ⊂ R2 around C.

We may gradually shrink a disk within itself to its center by making the
radius smaller. We can not deform a circle to its center, because a smaller circle
would be outside the original circle. So a circle is topologically non-trivial, while
any closed loop in a disk is contractible. Spaces connected by such continuous
deformations have the same homotopy type. We now formalize our problem.
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Fig. 2. A cloud C, α-offsets Cα and Homologically Persistent Skeleton HoPeS(C)

Multi-scale topological skeletonization: given a cloud C ⊂ R2, find a
graph whose vertices are all points of C and whose suitable subgraphs have the
homotopy type of the α-offset Cα for any α. A Homologically Persistent Skeleton
HoPeS(C) is an optimal and stable skeleton satisfying the above requirements.

A cloud C is an ε-sample of (ε-close to) a graph G ⊂ R2 if G ⊂ Cε and
C ⊂ Gε. So any point of C is at most ε away from a point of G and any point of
G is at most ε away from a point of C. The maximum possible value of ε is the
upper bound of noise (the Hausdorff distance between G and its sample C).

Here is a high-level description of our contributions to skeletonization.

• Definition 2 introduces a Homologically Persistent Skeleton HoPeS(C) of a
cloud C ⊂ R2 summarizing the persistence of 1-dimensional cycles in all Cα.

• Lemma 3 proves that, for a cloud C ⊂ R2 of any n points, HoPeS(C) has the
size O(n) and is computed in time O(n log n) without any extra parameters.

• Lemma 4 shows that HoPeS(C) is a scale-and-rotation invariant of C ⊂ R2.

• Theorem 5 proves that the reduced graph HoPeS(C;α) at any scale α > 0 has
the minimum length among all graphs that have the homotopy type of Cα.

• Theorem 7 guarantees that for any ε-sample of a simple enough graph G ⊂ R2,
HoPeS′(C) is a correct topological reconstruction of G in the 2ε-offset G2ε.

• Corollary 8 implies that the derived subgraph HoPeS′(C) is stable for any
δ-perturbation of a cloud C that was ε-sampled around a planar graph G.

The novelty of this paper is not the fast algorithm for 1-dimensional per-
sistence, but the new fundamental concept of a Homologically Persistent Skele-
ton HoPeS(C) that depends only a cloud C ⊂ R2 and solves the skeletonization
problem without extra parameters and with guarantees in Theorems 5 and 7.

A graph without cycles is a forest. A connected forest is a tree. For a cloud
C ⊂ R2, a Minimum Spanning Tree MST(C) is a tree that has the vertex set C
and the minimum total length of edges, see Fig. 3. The reduced forest MST(C;α)
is obtained from MST(C) by removing all open edges longer than 2α.

A connected graph G spans a cloud C if C is the vertex set of G. A graph G
spans a possibly disconnected α-offset Cα if G has vertices at all points of the
cloud C and any vertices of G are in the same connected component of G if and
only if these vertices are in the same connected component of the α-offset Cα.
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Fig. 3. Cloud C, minimum spanning tree MST(C) and α-offsets C2.5, C
√
34/2, C3.

Points p, q ∈ C are in the same single-edge cluster of C if d(p, q) ≤ 2α.
Lemma 1 says that MST(C) is a universal optimal object that describes the
0-dimensional topology (all single-edge clusters) of C across all scales α.

Lemma 1 For a cloud C and any scale α ≥ 0, the reduced forest MST(C;α)
has the minimum total length of edges among all graphs that span Cα at the
same scale α. Hence all connected components of the reduced forest MST(C;α)
are in a 1-1 correspondence with all single-edge clusters of the cloud C.

Lemma 1 and all later results are proved in Appendix B. Theorem 5 extends
the optimality of MST(C) in Lemma 1 for clusters (dimension 0 approximation
of C) to the skeleton HoPeS(C) for cycles (dimension 1 approximation of C).

3 Comparison with related past skeletonization work

Our approach may look similar to the well-known scale-space theory [15] that
suggests how to find a suitable scale. However, we do not choose any scale, we
find topological features with longest life spans, which may not overlap. For
instance, if one feature lives over the scale interval 1 ≤ α ≤ 2 and another over
3 ≤ α ≤ 4, then both features can not be captured at any fixed scale α. We can
capture both features only by analyzing their life spans among all features.

The classical scale selection relies on analyzing data at discrete scales, usually
proportional to powers of 2. The persistent homology works over the continuous
scale so that all critical scales are found only from a given cloud, not by manually
selecting a step size for incrementing the scale. Though we wouldn’t say that
persistent homology is ‘perpendicular’ to scale-space theory, our method is at
least ‘diagonal’ to a scale selection, see diagonal gaps in Definiton 6.

To the best of our knowledge, all known skeletonization algorithms for clouds
need extra parameters such as a scale α or a noise bound ε. Hence all these
algorithms can not run on our minimal input, which is only a cloud C. Since a
manual choice of parameters can be unfair, the experimental comparison with
the past work seems impossible and we can compare only theoretical aspects.

N. Cornea et al. [6] stated the following requirements for skeletonization.
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• Topology : a skeleton found from a noisy sample C is homeomorphic to (or has
the homotopy type of) the original shape as in Theorem 7 from section 5.

• Centering : if a shape is well-sampled, a skeleton geometrically approximates
the original shape in a small offset, see the 2ε-offset guarantee in Theorem 7.

• Efficiency : a near linear time in the number n of points as in our Lemma 3.

Our skeleton HoPeS(C) satisfies the extra conditions: independence of extra
parameters, rotation-and-scale invariance and stability under bounded noise.

R. Singh et al. [16] approximated a skeleton of a shape by a subgraph of a
Delaunay triangulation based on 2nd order Voronoi regions. The algorithm has
3 threshold parameters: K for the minimum number of edges in a cycle and
δmin, δmax for inserting and merging Voronoi regions. M. Aanjaneya et al. [1]
solved a related problem approximating a metric on a large input graph by a
metric on a small output graph. So the input is a graph, not a cloud of points.

Starting from a noisy sample of an unknown graph G with a scale parameter,
X. Ge et al. [11] produced the Reeb graph with the same number of loops as the
graph G. This output is an abstract graph of a simplicial complex on a cloud C
and is not intrinsically embedded into any space even if C ⊂ R2. [11, section 3.3]
reported ‘spurious branches or loops in the Reeb graph constructed no matter
how we choose a radius or a number of neighbours to decide the scale’.

F. Chazal and J. Sun [4] estimated a distance between an unknown graph
X and a new α-Reeb graph that was obtained from a noisy sample of X. Their
algorithm has the same fast time O(n log n), but is not directly comparable with
ours, because the α-Reeb graph needs a manually chosen scale α.

T. Dey et al. [8] built a complex depending on a user-defined graph that
spans a cloud C of n points. This Graph Induced Complex GIC has the same
homology H1 as the Rips complex of a cloud C at a suitable scale α. The 2D
skeleton of GIC needed for computing H1 has the size O(n3) in a worst case.

For image segmentation, α-offsets were similarly used in [14] (with 2 ex-
tra parameters) and in [13] (without parameters). These segmentations miss all
branches of a graph given by a sample, so our skeletonization problem is harder.

Papers [11], 2011 [1], 2012 [8], 2013 [4], 2014 this paper

Extra input radius r radius r, noise ε graph spanning C scale α no parameters
Complexity O(n logn) O(n2) at least O(n3) O(n logn) O(n logn)

Table 1. Comparison of similar skeletonization methods for unstructured clouds.

The discussion in [2, section 13] proposed to select features by persistence [10]
and led us to the new concept of HoPeS(C) in Definition 2. The key advantage of
our approach over the past work is the absence of any user-defined parameters.

• HoPeS(C) of a cloud C has no extra input parameters (such as ε or α) that
are needed in all past skeletonization algorithms for an unstructured cloud C.

5



• For a cloud C ⊂ R2 of any n points, the skeleton HoPeS(C) with O(n) edges
can be found in time O(n log n), which is comparable only with [4], [11], [16].

• HoPeS(C) is the first universal structure on a cloud C that summarizes all
cycles of Cα and has a subgraph HoPeS′(C) stable under perturbations of C.

• HoPeS′(C) approximates a graph G in the 2ε-offset G2ε from any ε-sample of
G, which has an analogue only in [4] for a metric reconstruction problem.

• Theorem 5 gives guarantees only in simple terms of a graph G ⊂ R2 and
its noisy ε-sample C ⊂ R2, while [11, Theorem 3.1] needs a complex K with a
homotopy equivalence h : K → G that ε-approximates the metrics of K and G.

4 Homologically Persistent Skeleton and its optimality

Here we give a rather intuitive introduction into homology theory using only
α-offsets Cα as typical spaces. All rigorous definitions are in Appendix A.

The 0-dimensional homology H0 counts connected components. Formally,
H0(Cα) is the group (or vector space of linear combinations with coeffiecients in
Z2 = {0, 1}) generated by the components of Cα. For instance, the offset C2.5

in Fig. 3 has 2 components. Hence H0(C2.5) = Z2⊕Z2 has rank (dimension) 2.

The 1-dimensional homology H1 of Cα ⊂ R2 similarly counts holes in Cα

(bounded regions in the complement R2 − Cα). For example, the offset C
√
34/2

in Fig. 3 has 1 red hole, so H1(C
√
34/2) = Z2. This hole splits into 2 holes at

α = 3, hence H1(C3) = Z2 ⊕ Z2. The smaller of the 2 holes disappears when
α = 25

8 is the circumradius of the triangle on vertices (±3, 0) and (0,−4), so

H1(C25/8) = Z2. The remaining hole dies when α = 17
5 is the circumradius of

the triangle on vertices (±3, 0) and (0, 5), hence H1(C17/5) = 0 is trivial.

All α-offsets form an ascending filtration (a nested sequence of spaces) C =
C0 ⊂ . . . ⊂ Cα ⊂ . . . ⊂ C+∞ = R2. These inclusions induce linear maps in H1:

C2.5 ⊂ C
√
34/2 ⊂ C3 ⊂ C25/8 ⊂ C17/5 induce 0→ Z2 → Z2 ⊕ Z2 → Z2 → 0.

The sequence of the linear maps in H1 above splits into 2 simpler sequences:

hole 1 lives over the interval
√
34
2 ≤ α <

17
5 , namely 0→ Z2 → Z2 → Z2 → 0,

hole 2 lives over the short interval 3 ≤ α < 25
8 , namely 0→ 0→ Z2 → 0→ 0.

At α = 3 when the initial hole splits into 2 smaller holes, we assume that
one of the holes ‘inherits’ (continues the life of) the previous hole, while another
hole is ‘newborn’ at the splitting moment. The standard convention is to give
preference to a longer living hole. So the life spans (the barcode) of the filtration

{Cα} are [
√
34
2 , 175 ) and [3, 258 ). We plot the endpoints of these bars as red dots

with coordinates (birth,death) in the persistence diagram PD{Cα}, see Fig. 4.

This diagram is a summary of life spans of holes (1-dimensional homology
classes) of Cα across all scales α. The key result of persistent homology is Sta-
bility Theorem 17 [5] roughly saying that any small perturbation of the cloud C
gives rise to a similar small perturbation of the diagram PD{Cα} in the plane.
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If a hole of Cα is born, then this hole becomes enclosed by a cycle through
points of C. The last longest edge in this enclosing cycle is added at the birth

time α of the hole and is critical for the hole in question. Hole 1 born at α =
√
34
2

has the critical edge e1, see Fig. 4. Hole 2 born at α = 3 has the critical edge e5.

Fig. 4. Diagram PD{Cα} for the cloud C in Fig. 3 and skeletons from Definitions 2, 6.

For any filtration {Cα}, each red dot in PD{Cα} has a corresponding critical
edge e (between points of C) with the label (birth(e),death(e)). Our Definition 2
transforms the diagram PD{Cα} of disconnected points into a universal structure
on the data cloud C summarizing the persistence of holes in {Cα} for all α.

Definition 2 For a cloud C, a Homologically Persistent Skeleton HoPeS(C)
is the union of MST(C) and all critical edges with their labels (birth,death),
see Fig. 4. The reduced skeleton HoPeS(C;α) is obtained from HoPeS(C) by
removing all edges longer than 2α and all critical edges e with death(e) ≤ α.

If α = 0, then HoPeS(C; 0) = C is the given cloud. By Definition 2 a critical
edge e belongs to the reduced skeleton HoPeS(C;α) if and only if birth(e) ≤
α < death(e). So a critical edge e is added to HoPeS(C;α) at α = birth(e) and
is later removed at the larger scale α = death(e). The cloud C in Fig. 3 has

HoPeS(C;
√
34
2 ) = MST(C)∪ e1, but HoPeS(C; 3) is the full skeleton HoPeS(C).

The filtration {HoPeS(C;α)} may not be monotone with respect to the scale
α. But if HoPeS(C;α) has become connected, it will stay connected for all larger
α. Indeed, removing a critical edge destroys only a cycle, not connectivity.

Similarly to MST(C), a Homologically Persistent Skeleton HoPeS(C) is unique
in a general position when the distances between all points of C are different.

Lemma 3 For any cloud C ⊂ R2 of n points, a Homologically Persistent Skele-
ton HoPeS(C) has the size O(n) and is computable in time O(n log n).

Lemma 4 below help visualize the 1-dimensional persistence diagram PD{Cα}
directly on the cloud C. Lemma 4 justifies that HoPeS(C) is suitable for Com-
puter Vision applications where a scale-and-rotation invariance is important.
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Lemma 4 For a cloud C ⊂ R2, the 1-dimensional persistence diagram PD{Cα}
of the filtration of α-offsets Cα can be reconstructed from a Homologically Per-
sistent Skeleton HoPeS(C). The topological structure of HoPeS(C) is invariant
under any affine transformation whose 2× 2 matrix has equal eigenvalues.

Our first main Theorem 5 says that HoPeS(C) is an optimal graph that
extends MST(C) and captures the persistence of all holes in the filtration {Cα}.

Theorem 5 For any cloud C ⊂ R2 and any α > 0, the graph HoPeS(C;α) has
the minimum total length of edges over all graphs G ⊂ Cα that span the α-offset
Cα and induce an isomorphism in 1-dimensional homology H1(G)→ H1(Cα).

A graph G spans Cα if G ⊂ Cα induces an isomorphism H0(G) ∼= H0(Cα).
An isomorphism H1(G) ∼= H1(Cα) means that the graph G has the homotopy
type of the α-offset Cα ⊂ R2. Hence our Homologically Persistent Skeleton G =
HoPeS(C) solves the multi-scale skeletonization problem stated in sections 1–2.

5 The reconstruction theorem and stability of HoPeS(C)

A Homologically Persistent Skeleton HoPeS(C) contains all 1-dimensional cycles
in the offsets Cα across the full range of α. It is natural to select cycles with
highest persistence to get a smaller subgraph HoPeS′(C) ⊂ HoPeS(C). So we
select not a scale as in scale-space theory, but a widest diagonal gap in the
persistence diagram PD{Cα}. This widest gap makes sense for finite sets C and
for any compact set S ⊂ R2 that is a finite union of closed topological disks.

Definition 6 For a compact set S ⊂ R2 and the ascending filtration of offsets
Sα, a diagonal gap in the persistence diagram PD{Sα} is a largest (by inclusion)
strip {0 ≤ a < y − x < b} that has no points from the diagram, see Fig. 3.

The widest diagonal gap dgap(S) has the largest width |dgap(S)| = b−a. Let
the subdiagram PD′{Sα} ⊂ PD{Sα} have only the points above dgap(S). The
critical scale α(S) is the maximum birth over all (birth,death) ∈ PD′{Sα}.

For a cloud C = S, the derived skeleton HoPeS′(C) is obtained from HoPeS(C)
by removing (1) all edges longer than 2α(C), and (2) all critical edges either with
death ≤ α(C) or with (birth,death) below the widest diagonal gap dgap(C).

In Definition 6 if there are different gaps with the same width, we say that
the gap with largest values along the vertical death axis has the largest width.

The cloud C in Fig. 3 has the widest gap dgap(C) between the points (
√
34
2 , 175 )

and (3, 258 ) in PD{C(α)}, so the critical scale is α(C) =
√
34
2 , see Fig. 4.

Condition (1) above guarantees that HoPeS′(C) ⊂ HoPeS(C;α(C)), because
all long critical edges e with birth(e) > α(C) are removed, see Lemmas 24 and
27 in Appendix B. Condition (2) filters out cycles with early deaths and low
persistence, but HoPeS′(C) 6= HoPeS(C;α(C)). Instead of selecting a fixed scale
as in scale-space theory, we select cycles by their persistence across all scales α.
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We define concepts needed for Theorem 7. A non-self-intersecting cycle L in
a graph G ⊂ R2 is basic if L encloses a bounded region of R2 − G. When α
is increasing, the hole enclosed by the α-offset Lα is born at α = 0 and dies
at the scale α = ρ(L) that is called the radius of the cycle L. So the initial
hole enclosed by L has the life span [0, ρ(L)). The heart-shaped hole in the first
picture of Fig. 5 completely dies at α = ρ(L), which holds for any convex hole.

In general, when α is increasing new holes can be born in Gα, let they be
enclosed by L1, . . . , Lk at their birth times. The thickness θ(G) = max

j=1,...,k
ρ(Lj)

is the maximum persistence of these smaller holes born during the evolution of
offsets Gα. If no such holes appear, then θ = 0, otherwise θ > 0, see Fig. 5.

Fig. 5. The ‘heart’ graph has thickness θ = 0. The ‘figure-eight’ graph has θ > 0.

Theorem 7 says that HoPeS′(C) is a close approximation to a graph G from
any its ε-sample C. The homotopy type of a connected graph G is determined
by its H1(G). Namely, G continuously deforms to a wedge of dimH1(G) loops.

Theorem 7 Let C be any ε-sample of a connected graph G ⊂ R2 with a thick-
ness θ(G) ≥ 0 and m ≥ 1 basic cycles having ordered radii ρ1 ≤ . . . ≤ ρm. If
ρ1 > 7ε+ θ(G) + max

i=1,...,m−1
{ρi+1− ρi}, then the critical scale α(C) ≤ ε, and the

derived skeleton HoPeS′(C) is 2ε-close to G and has the homotopy type of G.

The inequality above means that the cycles of the graph G have ‘comparable’
sizes, i.e. the smallest radius ρ1 is larger by a good margin than any gap ρi+1−ρi
between the ordered radii. Hence the diagonal gap {θ(G) < death−birth < ρ1} in
the diagram PD{Gα} of the graphG will remain wide enough to be automatically
recognized in the perturbed diagram PD{Cα} for any ε-sample C of G.

Theorem 7 is stronger than any estimate of homology from noisy samples. In
addition we build on a sample C an actual skeleton HoPeS′(C) that is 2ε-close
to an unknown graph G. Theorem 7 extends simpler [13, Theorem 32], which
works only for a much smaller class of graphs G ⊂ R2 with thickness θ = 0.

Corollary 8 In the conditions of Theorem 7 if another cloud C̃ is δ-close to C,
then the perturbed derived skeleton HoPeS′(C̃) is (2δ + 4ε)-close to HoPeS′(C).
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We can’t expect that HoPeS′(C) is locally stable for any cloud C, because
a minimum spanning tree MST(C) is sensitive to perturbations of C. However,
Corollary 8 guarantees the overall stability of the derived skeleton (within a
small offset) in the most practical case for noisy sample of graphs. Proofs were
checked during talks at Oxford (UK), IST (Austria), TU Wien, TU Graz.

6 Algorithm, experiments and practical applications

Lemma 12 in Appendix A justifies that complicated α-offsets Cα can be replaced
by simpler α-complexes C(α), which filter a Delaunay triangulation Del(C).
Starting from a cloud C ⊂ R2 of n points, we build Del(C) in time O(n log n)
with O(n) space. Regions in the complement R2−C(α) are dual to their bound-
aries. This duality [3] reduces 1-dimensional persistence of cycles in the filtration
{C(α)} to 0-dimensional persistence of connected components in R2 − C(α).

Fig. 6. A sample C of O45, diagram PD{C(α)}, HoPeS′(C) and its simplification.

The 0-dimensional persistence is computed in time O(nA−1(n)) using a
union-find structure [10], where A−1(n) is the slow growing inverse Ackermann
function. We extend this algorithm by recording a critical edge along which two
regions of R2 − C(α) merge when α is decreasing. See details in Appendix C.

Fig. 7. A sample C of D33, diagram PD{C(α)}, HoPeS′(C) and its simplification.
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Fig. 6 shows 121 random points sampled from a real image of hieroglyph O45.
The second picture of Fig. 6 is the diagram PD{C(α)} with a widest diagonal gap
clearly separating the noise near the diagonal from 2 red points corresponding
to 2 cycles in the derived graph HoPeS′(C). Theorem 7 gives the lower bound
α(C) for the unknown noise level ε. We use this intrinsic critical scale α(C) for
pruning short branches and collapsing short edges to get a simplified version of
HoPeS′(C) in the last picture of Fig. 6, see details in Appendix C. Fig. 7 has
similar results for 321 points sampled from another hieroglyph D33.

Fig. 8. Image BSD176035, cloud C of 3603 points, HoPeS′(C) and its simplification.

In Fig. 8 we selected feature points from a challenging image by simply
comparing the color of each pixel with the average in 5 × 5 neighborhood. The
threshold for the normal deviation in the 3-dimensional RGB space was 65 as in
Fig. 1. Fig. 9 shows similar results for the normal deviation 100 of the color.

Fig. 9. Image BSD42049, cloud C of 1763 points, HoPeS′(C) and its simplification.

Table 2 has the running time in milliseconds for the database BSD500, where
all images have 481 × 321 pixels and we used 2 thresholds in each images, see
details in Appendix D. We ran our not yet optimized code on a small laptop with
1.33GHz RAM 2GB to show that the algorithm is fast for embedded systems.

Images from BSD500 42049 42049 176035 176035 175083 175083 134049 134049

Time for a cloud C, ms 1022 1336 1017 1038 1066 1015 1051 1165

Points in the cloud C 2664 3604 3603 4249 3928 4950 4396 6767

Time for HoPeS′(C), ms 969 1789 1898 2629 2143 3602 3780 6259

Table 2. Time for extracting C from images in BSD500 and computing HoPeS′(C).

We have demonstrated the following practical applications of HoPeS(C).
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• Robust recognition of low quality scans in Fig. 6, 7, 15, 16, 17, 18. Such visual
markers [7] can replace shop barcodes that are not readable by humans.

• A fast topological summary of images, see Fig. 1, 8, 9, 19, 20, 21, 22.

Fig. 10. Pipeline for building an object-wide descriptor from noisy local features

We are open to collaboration on extending HoPeS(C) to higher dimensions
and using HoPeS(C) for clouds C of interest points such as SIFT or SURF. We
thank all reviewers in advance for their comments and helpful suggestions.
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Appendix A: α-complexes C(α) and persistent homology

To avoid any confusion, we continue numbering claims, figures as in the paper.

Definition 9 A plane graph is a subset G ⊂ R2 consisting of finitely many
vertices and non-intersecting edges (continuous arcs) joining vertices.

We study topological structures such as graphs and 2-dimensional complexes.
Topological invariants are preserved under continuous deformations including
any projective transformations. So topological invariants are insensitive to ge-
ometry and help recognize objects that are viewed from different angles.

If every bounded region in the complement R2 − G of a plane graph is a
triangle, then the graph G defines a triangulation on its vertices. A Delaunay
triangulation Del(C) with vertices in a cloud C ⊂ R2 consists of ‘nice’ triangles.

Definition 10 For a cloud C = {p1, . . . , pn} ⊂ R2 of n distinct points, a De-
launay triangulation Del(C) has all triangles with vertices pi, pj , pk ∈ C whose
circumcircle doesn’t enclose any other points of the cloud C, see Fig. 11.

A Delaunay triangulation Del(C) of a cloud C ⊂ R2 is not unique if C
contains 4 points on the same circle. The boundary edges of Del(C) form the
convex hull(C) of C. It is well-known that, for any finite cloud C ⊂ R2 of n
points, a Delaunay triangulation Del(C) has O(n) edges and triangles, and can
be found in time O(n log n).

Fig. 11. Delaunauy triangulation Del(C), C(2) and C2 for the cloud C in Fig. 2.

To study a cloud C at different scales, we shall define subcomplexes con-
taining the elements of Del(C) whose sizes are smaller than a fixed scale α. We
introduce Voronoi cells, which are ‘natural’ neighborhoods of points p ∈ C.

For a point pi ∈ C, the Voronoi cell consists of all points q ∈ R2 that are
closer to pi than to all other points of C, so V (pi) = {q ∈ R2 : d(pi, q) ≤
d(pj , q) ∀j 6= i}. Then a Delaunay triangulation Del(C) contains all triangles
with vertices p, q, r ∈ C such that V (p) ∩ V (q) ∩ V (r) 6= ∅.

The α-complex C(α) is defined below as a subtriangulation of Del(C) at a
scale α. Denote by B(p;α) ⊂ R2 the closed disk with a center p and radius α.
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Definition 11 For a finite cloud C ⊂ R2, the α-complex C(α) ⊂ R2 contains
all edges between points p, q ∈ C such that V (p)∩B(p;α) meets V (q)∩B(q;α),
see [10, section III.4]. Similarly, the α-complex C(α) contains all triangles with
vertices p, q, r such that V (p) ∩B(p;α) ∩ V (q) ∩B(q;α) ∩ V (r) ∩B(r;α) 6= ∅.

If α > 0 is small, C(α) consists of all isolated points of C. If α is large enough,
then C(α) = Del(C). All α-complexes form a sequence of nested complexes,
called a filtration C = C(0) ⊂ . . . ⊂ C(α) ⊂ . . . ⊂ C(+∞) = Del(C). So Del(C)
is built on points of C by adding edges and triangles at these critical values:

• edge between points pi, pj is added at α = 1
2d(pi, pj);

• an acute triangle (that has all angles < π
2 ) is added at the critical value α

equal to the circumradius of the triangle;

• a non-acute triangle is added to C(α) at the scale α that is equal to the
half-length of the largest side in the triangle.

The ascending filtration of α-complexes C(α) is illustrated for the cloud C
in Fig. 12. The lengths are |e3| = |e4| = 5 < |e1| = |e2| =

√
34 < |e5| = 6. The

triangles T1, T2 enter C(α) when α equals their circumradii 25
8 ,

17
5 .

Fig. 12. The cloud C of 4 points, C(α) for α =
√
34
2

, 3, 25
8

, 17
5

.

The complex C(α) is a subset of the offset Cα, because any edge of C(α)
has a half-length 1

2d(pi, pj) ≤ α. Nerve Lemma 12 below says that the α-offset
Cα can be gradually made thinner until it becomes the complex C(α). This
deformation is easy to see for C2 in Fig. 2 and C(2) in Fig. 11.

Lemma 12 [9, Theorem 3.2(i)] For any cloud C ⊂ R2 and any scale α > 0,
the α-offset Cα is homotopy equivalent to the α-complex C(α). Namely, the
identity map id : Cα → Cα is included into a continuous family of deformations
ft : Cα → Cα, t ∈ [0, 1], where f0 = id and f1 projects Cα to C(α).

The α-complex C(α) is an example of a simplicial complex S ⊂ R2 consisting
of finitely many edges and triangles that are naturally joined. For instance, the
intersection of any two triangles should be their common edge, or their common
vertex or empty. A cycle in a complex S is any cycle formed by edges of S.
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The homology group H1(S) is a vector space whose dimension is the number
of ‘independent’ cycles in S. The complex C(3) in Fig. 12 has 2 independent
cycles e1 ∪ e2 ∪ e5 and e3 ∪ e4 ∪ e5. The third cycle e1 ∪ e2 ∪ e3 ∪ e4 can be
considered as a ‘sum’ of the above cycles modulo 2, which is formalized below.

Definition 13 Cycles of a complex S can be algebraically written as linear com-
binations of edges with coefficients 0 or 1 in the group Z2 = {0, 1}. The vector
space C1 consists of all these linear combinations. The boundaries of all triangles
in S (as cycles of 3 edges) generate the subspace B1 ⊂ C1. The quotient C1/B1

is the 1-dimensional homology group H1(S) with the coefficients Z2 = {0, 1}.

The complex C(3) in Fig. 12 has C1 = Z2 ⊕ Z2 generated by e1 + e2 + e5
and e3 + e4 + e5 whose sum modulo 2 is the third cycle e1 + e2 + e3 + e4, so
H1(C(3)) = Z2 ⊕ Z2. In the complex C( 25

8 ) the triangle T1 has the boundary
∂T1 = e3 +e4 +e5 and kills this cycle in the quotient C1/B1, hence H1(C( 25

8 )) =
Z2. Similarly, T2 ⊂ C( 17

5 ) kills ∂T2 = e1 + e2 + e5, so H1(C( 17
5 )) = 0.

A class γ ∈ H1(S) may be represented by several homologically equivalent
cycles L ⊂ S. The classes e1+e2+e5 and e1+e2+e3+e4 are equal in H1(C( 25

8 )),
see Fig. 12, because their difference modulo 2 is ∂T1 = e3 + e4 + e5, which can
be continuously shrunk to a point through T1.

The inclusions C(0) ⊂ . . . ⊂ C(α) ⊂ . . . ⊂ C(+∞) induce linear maps
of corresponding homology groups H1(C(0)) → . . . → H1(C(α)) → . . . →
H1(C(+∞)). The inclusions C ⊂ C(

√
34
2 ) ⊂ C(3) ⊂ C( 25

8 ) ⊂ C( 17
5 ) of com-

plexes in Fig. 12 induce the linear maps 0→ Z2 → Z2 ⊕ Z2 → Z2 → 0.

The homology class e1 +e2 +e3 +e4 is born at α =
√
34
2 and persists through

α = 3, when the class e1 + e2 + e5 is born. At α = 25
8 their sum (modulo

2) e3 + e4 + e5 becomes trivial. We keep the older class and let the younger
class e1 + e2 + e5 die by the ‘elder’ rule of persistence [10, p. 150]. This merger
corresponds to the projection Z2 ⊕ Z2 → Z2 above. The class e1 + e2 + e3 + e4
dies at α = 17

5 and has the life span (or persistence) death− birth = 17
5 −

√
34
2 .

We now formally define births and deaths of classes.

Definition 14 In a filtration {C(α)} of complexes a class γ ∈ H1(C(αi)) is
born at αi = birth(γ) if γ is not in the image of the map H1(C(α))→ H1(C(αi))
for any α < αi. The class γ dies at αj = death(γ) > αi when the image
of γ under H1(C(αi)) → H1(C(αj)) merges into the image of H1(C(α)) →
H1(C(αj)) for some α < αi.

If H1(C(α−ε))→ H1(C(α+ε)) is not an isomorphism for any small enough
ε > 0, then α is critical (a birth or a death). Births and deaths are visualized
below as points (birth,death) in the persistence diagram on the plane.

Definition 15 For a cloud C ⊂ R2, let α1, . . . , αk be all values of α when
the homology group H1(C(α)) changes. Let µij be the number of independent
classes in H1(C(α)) that are born at αi and die at αj. The persistence dia-
gram PD{C(α)} ⊂ R2 is the multi-set consisting of all points (αi, αj) with the
multiplicity µij and all diagonal points (x, x) with the infinite multiplicity.
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Points close to the diagonal are considered as noise, because corresponding
homology classes have a low persistence or a short life span from birth to death.

PD{C(α)} in Fig. 4 has only 2 off-diagonal points (
√
34
2 , 175 ) and (3, 258 ).

The homology and persistence diagram can be defined for spaces more com-
plicated than a simplicial complex, say for α-offsets Gα of a graph G ⊂ R2.
Lemma 12 implies that H1(Cα) = H1(C(α)), so PD{Cα} = PD{C(α)}.

The dimension of H1(C(α)) equals the number of points (b, d) ∈ PD{C(α)}
counted with multiplicities in the ‘infinite rectangle’ {birth ≤ α < death} =
[0, α]× (α,+∞). Indeed, a homology class γ that is alive at the scale α was born

earlier at birth ≤ α and should die later at death > α. The complex C(
√
34
2 ) in

Fig. 12 is a topological circle and has H1 = Z2, because the diagram PD{C(α)}
in Fig. 4 has one point (

√
34
2 , 175 ) satisfying birth ≤

√
34
2 ≤ death.

The key advantage of the persistence diagram over classical homology is
stability under noise. Replacing one point in a cloud by several close points can
introduce many small cycles in C(α) at a fixed scale α, but these cycles have a
low persistence. To state Stability Theorem 17, we define the bottleneck distance
between persistence diagrams. Informally, the bottleneck distance between two
sets is the minimum perturbation that allows us to match the sets.

Definition 16 For points p = (x1, y1), q = (x2, y2) in R2, we set ||p − q||∞ =

max{|x1 − x2|, |y1 − y2|}. The bottleneck distance between PD and P̃D is dB =

infψ supq ||q − ψ(q)||∞ over all bijections ψ : PD→ P̃D of infinite multi-sets.

If we consider life intervals [birth,death] ⊂ R instead of points (birth,death) ∈
R2, the distance ε means that we perturb endpoints of intervals by at most ε, so
a class may be born a bit earlier/later or may die a bit earlier/later. Celebrated
Stability Theorem 17 briefly says that any perturbation of a given cloud by ε
yields a perturbation of the persistence duagram by at most ε.

Theorem 17 [5] dB(PD{Gα},PD{C(α)}) ≤ ε for any ε-sample C of G.

Finally, we formally define critical edges needed for Definition 2.

Definition 18 For the filtration {C(α)} of α-complexes of a cloud C ⊂ R2, each
point (αi, αj) ∈ PD{C(α)} corresponds to a homology class γ ∈ H1(C(α)) for
αi ≤ α < αj. This class γ was born when a new (last) edge e(γ) entered C(αi).
The edge e(γ) between points of C is called critical and has the label (αi, αj).

If a point (αi, αj) ∈ PD{C(α)} has a multiplicity µij > 1, then there are
µij independent classes in H1(C(α)) living over αi ≤ α < αj and also µij
corresponding critical edges with the label (αi, αj). For the cloud C in Fig. 12,
let MST(C) = e2 ∪ e3 ∪ e4. Then e1 is the critical edge of the class γ persisting

over
√
34
2 ≤ α < 17

5 , while e5 is the critical edge of the class persisting over
3 ≤ α < 25

8 . The length of any critical edge is |e(γ)| = 2birth(γ) by Lemma 19.

For any non-acute Delaunay triangle T , its longest edge e is not critical,

because e and T simultaneously enter C(α) at the scale α = |e|
2 . So e is homo-

logically equivalent to ∂T − e and doesn’t give birth to a new homology class.
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Appendix B: detailed proofs of all results in the paper

Proof of Lemma 1. Let e1, . . . , em ⊂ MST(C) be all edges that are longer
than α, so MST(C) = MST(C;α) ∪ e1 ∪ . . . ∪ em. Assume that there is a graph
G that spans C(α) and is shorter than MST(C;α). Then G∪ e1 ∪ . . .∪ em spans
the cloud C and is shorter than MST(C), which is a contradiction. �

Lemma 1 means that MST(C) at every α > 0 provides an optimal graph
that identifies all clusters of C. Main Theorem 5 extends Lemma 1 for a skeleton
that summarizes all 1-dimensional persistence of C instead of only clusters.

Proof of Lemma 3. The algorithm in Appendix C constructs a Delaunay
triangulation Del(C) in time O(n log n) with O(n) space. Then we go over all
O(n) Delaunay edges sorted by their length in the decreasing order to build
α-complexes and mark critical edges added to HoPeS(C). Sorting edges and
maintaining a union-find structure Forest(α) needs only O(n log n) time. �

Proof of Lemma 4. By Definition 2 the labels (birth,death) on all critical
edges of HoPeS(C) are in a 1-1 correspondence with all points in PD{C(α)}.

If an affine transformation is given by a shift vector and a 2 × 2 matrix
A : R2 → R2 with both eigenvalues equal to λ, then all disks, α-offsets Cα

and α-complexes C(α) are scaled by the factor λ. So a Homologically Persistent
Skeleton HoPeS(C) has the same topological (even combinatorial) structure, but
all labels (births, deaths) on critical edges are multiplied by λ. �

Lemma 19 Let a homology class γ ∈ H1(C(α)) be born due to a critical edge
e(γ) added to C(α). Then the length of the edge e(γ) equals 2birth(γ).

Proof. The critical edge e(γ) is the last edge joining a cycle L ⊂ C(α) giving
birth to the homology class γ at the scale α = birth(γ). By Definition 11 the
edge e(γ) enters C(α) when the length |e(γ)| = 2α. So |e(γ)| = 2birth(γ). �

An open edge e is splitting a connected graph G if G − e is disconnected.
Otherwise the edge e is called non-splitting and should be in a cycle of G.

Lemma 20 For a cloud C and any α, the reduced skeleton HoPeS(C;α) is con-
tained in C(α) at the same scale α.

Proof. By Definition 2 all edges of the reduced graph HoPeS(C;α) have lengths
at most α. By Definition 11 the α-complex C(α) contains all edges from Del(C)
with a length at most α. Hence HoPeS(C;α) ⊂ C(α) as required. �

Now the inclusion f : HoPeS(C;α)→ C(α) from Lemma 20 induces the lin-
ear map f∗ in 1-dimensional homology. Lemma 21 below analyzes what happens
with f∗ when a critical edge e is added to the α-complex S = C(α) and also to
the graph G = HoPeS(C;α) at the same scale α.

Lemma 21 (addition) Let an inclusion f : G → S of a graph G into a sim-
plicial complex S induce an isomorphism f∗ : H1(G) → H1(S). Let us add a
critical edge e to both G,S, which creates a new homology class γ ∈ H1(S ∪ e).
Then f∗ extends to an isomorphism H1(G ∪ e)→ H1(S ∪ e).
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Proof. Let L ⊂ G∪ e be a cycle containing the added edge e. Then H1(G∪ e) ∼=
H1(G)⊕〈[L]〉. Considering L as a cycle f(L) ⊂ S∪e, we get H1(S∪e) ∼= H1(S)⊕
〈[f(L)]〉. Mapping [L] to [f(L)] ∈ H1(S ∪ e), we extend f∗ to an isomorphism
H1(G)⊕ 〈[L]〉 → H1(S)⊕ 〈[f(L)]〉. �

Lemma 22 analyzes the homology of the reduced skeleton G = HoPeS(C;α)
and S = C(α) when a homology class γ dies in the homology H1(S).

Lemma 22 (deletion) Let an inclusion f : G → S of a graph G into a sim-
plicial complex S induce an isomorphism f∗ : H1(G) → H1(S). Let a homology
class γ ∈ H1(S) die after adding an open triangle T to the complex S. Let e
be the longest open edge of the triangle T . Then f∗ descends to an isomorphism
H1(G− e)→ H1(S ∪ T ).

Proof. Adding the triangle T to S kills the homology class [∂T ] of the boundary
∂T , so H1(S∪T ) ∼= H1(S)/〈[∂T ]〉. Deleting the open edge e from ∂T ⊂ G makes
the homology group smaller: H1(G− e) ∼= H1(G)/〈[∂T ]〉. Then the isomorphism
f∗ descends to the isomorphism H1(G)/〈[∂T ]〉 → H1(S)/〈[∂T ]〉. �

Proposition 23 For a cloud C ⊂ R2 and α > 0, the inclusion of the reduced
graph HoPeS(C;α)→ C(α) induces an isomorphism of 1-dimensional homology.

Proof. For any small enough α > 0, HoPeS(C;α) = C(α) is a disconnected cloud
C, so their homology H1 is trivial. Each time when a homology class is born or
dies in H1(C(α)), the isomorphism H1(HoPeS(C;α)) ∼= H1(C(α)) induced by
the inclusion HoPeS(C;α) ⊂ C(α) is preserved by Lemmas 21 and 22. �

Lemma 24 Let L ⊂ C(α) be a cycle that represents a homology class γ ∈
H1(C(α)). Then any longest edge e ⊂ L has a length at least 2birth(γ).

Proof. Let a longest edge e of a cycle L ⊂ C(α) representing γ have a half-length
α < birth(γ). Then the cycle L enters the complex C(α) earlier than birth(γ)
and can not represent the class γ that starts living at α = birth(γ). �

By Definition 3 a forest MST(C;α) on a cloud C ⊂ R2 is obtained from a
minimum spanning tree MST(C) by removing all edges longer than 2α.

Proposition 25 For a fixed scale α > 0, let a graph G ⊂ C(α) span a complex
C(α) ⊂ R2 and H1(G)→ H1(C(α)) be the isomorphism induced by the inclusion.
Let (bi, di), i = 1, . . . ,m, be all points in PD{C(α)} counted with multiplicities
within the ‘rectangle’ {birth ≤ α < death}. Then the total length of G is bounded

below by the total length of the forest MST(C;α) plus 2
m∑
i=1

bi.

Proof. Let the subgraph G1 ⊂ G consist of all non-splitting edges of G and
e1 ⊂ G1 be a longest open edge. Removing e1 from G makes H1(G) smaller.
Hence there is a cycle L1 ⊂ G containing e1 and representing a homology class
γ1 ∈ H1(C(α)) that corresponds to the (say) point (b1, d1) ∈ PD{C(α)}, so γ1
lives over birth(γ1) = b1 ≤ α < d1 The length satisfies |ei| ≥ 2b1 by Lemma 24.
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Let the subgraph G2 ⊂ G− e1 consist of all non-splitting edges and e2 ⊂ G2

be a longest open edge. We similarly find the corresponding point (b2, d2) and

conclude that |e2| ≥ b2 and so on. Finally, we get
m∑
i=1

|ei| ≥ 2
m∑
i=1

bi.

After removing e1, . . . , em, the graph G − (e1 ∪ . . . ∪ em) still spans C(α),
because each time we chose a non-splitting edge. The total length of G − (e1 ∪
. . . ∪ em) is not smaller than the total length of MST(C;α) by Lemma 4. �

Proof of Theorem 5. For any α > 0, the reduced graph HoPeS(C;α) satisfies
the homology condition by Proposition 23. Let classes γ1, . . . , γm correspond to
all m points in PD{C(α)} counted with multiplicities in {birth ≤ α < death}.
Then γ1, . . . , γm form a basis of H1(C(α)) ∼= H1(HoPeS(C;α)) by Definition 7.

By Lemma 19 the total length of HoPeS(C;α) equals the total length of

MST(C;α) plus 2
m∑
i=1

birth(γi). By Proposition 25 this length is minimal over all

graphs G ⊂ C(α) that span C and have the same homology as C(α). �

A geometric approximation by the reduced skeleton HoPeS(C;α) at any scale
α below will be used for proving the first approximation part of Theorem 7 below.

Proposition 26 Let C be any ε-sample of a compact set S ⊂ R2. Then the
reduced skeleton HoPeS(C;α) is (α+ ε)-close to S for any scale α > 0.

Proof. The cloud C is within the ε-offset Sε of the shape S. By Definition 2 all
edges of HoPeS(C;α) have a half-length at most α. The straight edge between
any points p, q ∈ C is covered by the disks of the radius α with the centers
p, q, so HoPeS(C;α) ⊂ Cα ⊂ Sα+ε. Since S ⊂ Cε is covered by the ε-offset of
HoPeS(C;α), the reduced skeleton HoPeS(C;α) is indeed (α+ ε)-close to S. �

Lemma 27 For any cloud C ⊂ R2, the derived graph HoPeS′(C) is a subgraph
of HoPeS(C;α(C)) at the critical scale α(C) introduced in Definition 6.

Proof. By Definition 2 all edges of HoPeS(C;α(C)) have lengths at most 2α(C).
Moreover, death > α(C) for all critical edges. Definition 6 imposes the extra re-
striction on critical edges of HoPeS′(C), namely each (birth,death) ∈ PD′{C(α)}
above the widest gap. So HoPeS′(C) ⊂ HoPeS(C;α(C)). �

Lemma 28 The dimension of H1(HoPeS′(C)) equals the number of points (b, d)
counted with multiplicities in the subdiagram PD′{C(α)} subject to d > α(C).

Proof. The dimension of H1(HoPeS′(C)) equals the number of homology classes
whose (birth,death) in PD{C(α)} is above the widest gap and death > α(C).
By Definition 6 any birth ≤ α(C), so we count all (birth,death) ∈ PD′{C(α)}
with birth ≤ α(C) < death. All these m points are in a 1-1 correspondence with
all critical edges of HoPeS′(C). So the dimension of H1(HoPeS′(C)) is m. �

Proof of Theorem 7. The homology group H1(G) is generated by the m basic
cycles L1, . . . , Lm that enclose m holes (bounded regions in the complement
R2 −G). These m cycles give points (0, ρi) in the vertical axis of PD{Gα}.
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All other points in the 1-
dimensional persistence diagram
PD{Gα} come from smaller holes in
Gα born later at various scales. The
maximum persistence death−birth
of these holes is bounded above by
the thickness θ(G), see Fig. 5.

The given condition ρ1 > 7ε+ θ(G) + max
i=1,...,m−1

{ρi+1 − ρi} guarantees that

the widest diagonal gap {θ(G) < y−x < ρ1} in PD{Gα} is wider than any other
gaps including the higher gaps of the widths ρi+1 − ρi, i = 1, . . . ,m− 1.

By Stability Theorem 17 the perturbed diagram PD{C(α)} of the cloud C
is in the ε-offset of PD{Gα} ⊂ ∪mi=1(0, ρi) ∪ {y − x < θ(G)} with respect to the
L∞ metric on R2. All noisy points near the diagonal in PD{C(α)} can not be
higher than θ(G) + 2ε after projecting along the diagonal to the vertical axis.

The remaining points can not be lower than ρ1−2ε under the same projection.
Hence the smaller diagonal strip {θ(G) + 2ε < y − x < ρ1 − 2ε} of the vertical
width ρ1 − 4ε− θ(G) is still empty in the perturbed diagram PD{C(α)}.

By Stability Theorem 17 any point (0, ρi) ∈ PD{Gα}, i ≥ 2, can not jump
lower than the line y − x = ρi − 2ε or higher than y − x = ρi + ε. Then the
widest diagonal gap between these perturbed points has a vertical width at most

max
i=1,...,m−1

{ρi+1 − ρi}+ 3ε. All points near the diagonal have diagonal gaps not

wider than θ(G) + 2ε. Hence in all cases the 2nd widest gap in PD{C(α)} has
a vertical width smaller than ρ1 − 4ε− θ(G). Hence the 1st widest diagonal gap
dgap(C) covers the strip {θ(G) + 2ε < y−x < ρ1− 2ε} ⊂ dgap(G) ⊂ PD{Gα}.

Hence the subdiagram PD′{C(α)} above the line y − x = ρ1 − 2ε contains
only perturbations of the original points (0, ρi) in the vertical strip {0 ≤ x ≤ ε}.
By Definition 6 the critical scale α(C) is the maximum birth over all points in
PD′{C(α)}. These points are at most ε away from their corresponding points
(0, ρi) in the vertical axis, hence the critical scale α(C) is bounded above by ε.

The deaths of all points in PD′{C(α)} are larger than ρ1 − 2ε > ε ≥ α(C).
Hence HoPeS′(C) contains all critical edges corresponding to the m points in
PD′{C(α)}, so H1(HoPeS′(C)) has the expected dimension m. The 2ε-closeness
of HoPeS′(C) and G follows from Proposition 26 and Lemma 27 for the set
S = C after replacing the critical scale α(C) by its upper bound ε. �

Proof of Corollary 8. The condition that the perturbed cloud C̃ is δ-close
to the original cloud C, which is ε-closed to the graph G, implies that C̃ is
(δ+ ε)-close to G. Theorem 7 for the ε-sample C and (δ+ ε)-sample C̃ of G says
that HoPeS′(C) is 2ε-close to G and HoPeS′(C̃) is (2δ + 2ε)-close to G. Hence
HoPeS′(C) and HoPeS′(C̃) is (2δ + 4ε)-close as required. �
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Appendix C: algorithm for HoPeS(C) and HoPeS′(C)

The only input is a cloud C of n points (xi, yi), i = 1, . . . , n with real coordinates.
There are no user-defined parameters. The outputs are the persistence diagram
PD{C(α)}, a Homologically Persistent Skeleton HoPeS(C), HoPeS′(G) and its
simplified version, all found in time O(n log n) with O(n) space.

Forest(α). Given a cloud of n points C ⊂ R2, we build a Delaunay triangulation
Del(C). We shall maintain a union-find structure Forest(α) on abstract nodes
that are in a 1-1 correspondence with all regions of R2−C(α). Initially Forest(α)
is one node v0 corresponding to the external region of C(+∞) = Del(C). If the
scale α is decreasing, then edges and triangles are disappearing from Del(C) and
we gradually get smaller α-complexes C(α).

Fig. 13. Trees of Forest(α) represent regions of R2 − C(α).

Shrinking C(α). Removing a triangle from C(α) adds one node v to Forest(α).
When an acute triangle T is removed at the scale α equal to the circumradius of
T , an isolated node v appears in Forest(α). Any non-acute triangle T is removed
together with its longest edge e at the scale α equal to the half-length of e.
If e was shared by two triangles S, T , their corresponding nodes are linked in
Forest(α), so T joins the region of R2−C(α) already containing S. Fig. 13 shows
how the nodes v1, v2 corresponding to right-angled triangles in the complex C(2)
are joined in Forest(

√
2).

Merging. In the most interesting case we remove an edge e between two acute
triangles S, T from different regions R,Q ⊂ R2 − C(α). Then R,Q merge into
R ∪ Q and the corresponding components of Forest(α) are linked. The edge e
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between Q,R is critical by Definition 17. So we maintain a 1-1 correspondence
between all connected regions of R2 − C(α) and all trees of Forest(α). Fig. 13
shows red dashed arcs joining centers of adjacent triangles for simplicity. Real
links in Forest(α) are added to guarantee balanced trees for a faster search.

Critical edges and MST. In comparison with a standard algorithm for 0-
dimensional persistence [3] we add to each pair (birth,death) the critical edge
e whose removal from C(α) caused the death of the younger region, say Q.
The older region R survives and absorbs Q by the ‘elder’ rule of persistence.
When only two remaining regions merge into one, the resulting complex C(α)
is connected if we keep all edges having the same region on both sides. So the
final complex C(α) contains MST(C) and no critical edges by construction.

Output HoPeS′(C). We convert the array (birth,death) into the persistence
diagram PD{Cα}. Then we find all m points (birth,death) above the widest di-
agonal gap in PD{Cα}. The corresponding m critical edges that were recorded
together with the pairs (birth,death) and can now be added to MST(C) giv-
ing the derived graph HoPeS′(C) by Definition 6. If we add the critical edges
corresponding to all points in PD{Cα}, we get the full graph HoPeS(C).

Simplify HoPeS′(C). The critical scale α(C) from Definition 6 is a lower esti-
mate for the noise bound ε by Theorem 7. Then 2α(C) is a lower estimate for
the distance between ε-perturbations of the same point. Hence we can simplify
HoPeS′(C) using the critical scale α(C) without any ad-hoc heuristics. We re-
move all paths to degree 1 vertices that have a length up to 2α(C) or whose
endpoints are within 2α(C)-offset of non-splitting edges of HoPeS′(C).

Then we collapse all short edges of length up to 2α(C) between vertices
of deg 6= 2. For simplicity, all remaining paths between vertices of deg 6= 2
are approximated by polygonal lines with edge-lengths of about 2α(C). Better
curve-fittings will certainly give smoother simplifications.

We shall upload the C++ code at http://kurlin.org in May 2015.

Appendix D: more practical experiments with HoPeS′(C)

The outputs for hieroglyphs O45, D33 are in section 6. Fig. 7–18 show results for
other Egyptian hieroglyphs in Fig. 14 from http://en.wikipedia.org/wiki/

List_of_Egyptian_hieroglyphs_by_alphabetization. A few red dots with
highest persistence are fat in PD{C(α)}and widest diagonal gaps are yellow.

Fig. 14. Images of hieroglyphs O45, D33, S34, W3, O42, N24.
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Fig. 15. A sample C of S34, diagram PD{C(α)}, HoPeS′(C) and its simplification.

Fig. 16. A sample C of W3, diagram PD{C(α)}, HoPeS′(C) and its simplification.

In Fig. 19 and 20 we used lower thresholds for selecting feature points in the
image BSD42049 from Fig. 9 in section 6. So C has more points than in Fig. 9,
but the persistence diagrams PD{C(α)} still have a widest gap separating 2 red
points from the noise near the diagonal. The derived skeletons HoPeS′(G) and
their simplifications have more branches presenting finer details of the input.

The derived skeleton HoPeS′(C) in Definition 6 is based on a widest gap
in the diagram PD{Cα}. The red points above this 1st widest gap correspond
to critical red edges that we added to MST(C) to get HoPeS′(C). Instead of
the 1st widest gap, we may take the 2nd gap and so on to get more derived
graphs HoPeS′′(C) etc. Our algorithm produces a hierarchy of skeletons ordered
by persistence of cycles hidden in C. All these skeletons are extracted from
PD{Cα} in the same time O(n log n). Indeed, all critical edges were found in
our data structure Map(α) when computing PD{Cα}. Fig. 21 and 22 show the
1st and 2nd derived skeltons for more challenging images.

23



Fig. 17. A sample C of O42, diagram PD{C(α)}, HoPeS′(C) and its simplification.

Fig. 18. A sample C of N24, diagram PD{C(α)}, HoPeS′(C) and its simplification.

Fig. 19. C = {2664 points in BSD42049}, PD{C(α)}, HoPeS′(C) and simplification.

Fig. 20. C = {3604 points in BSD42049}, PD{C(α)}, HoPeS′(C) and simplification.
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Fig. 21. First row: BSD175083 and cloud C of 3928 points. Second row: PD{C(α)}
with 1st and 2nd widest yellow gaps. Third row: derived graphs with 1 cycle (1 point
above the 1st gap in PD{C(α)}) and with 4 cycles (4 points above the 2nd gap).
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Fig. 22. First row: BSD134049 and cloud C of 5419 points. Second row: PD{C(α)}
with 1st and 2nd widest yellow gaps. Third row: the derived graphs with 1 cycle (1
point above the 1st gap in PD{C(α)}) and with 2 cycles (2 points above the 2nd gap).
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