Navigation maps of the material space for automated self-driving labs of the future

Daniel Widdowson^{1,2} and Vitaliy Kurlin^{1,2*}

¹Computer Science Department, University of Liverpool, Ashton Street, Liverpool, L69 3BX, United Kingdom. ²Materials Innovation Factory, University of Liverpool, Oxford Street,

Liverpool, L7 3NY, United Kingdom.

*Corresponding author(s). E-mail(s): vitaliy.kurlin@liverpool.ac.uk;

Abstract

With the advent of self-driving labs promising to synthesize large numbers of new materials, new automated tools are required for checking potential duplicates in existing structural databases before a material can be claimed as novel. To avoid duplication, we rigorously define the novelty metric of any periodic material as the smallest distance to its nearest neighbor among already known materials.

Using ultra-fast structural invariants, all such nearest neighbors can be found within seconds on a typical computer even if a given crystal is disguised by changing a unit cell, perturbing atoms, or replacing chemical elements. This real-time novelty check is demonstrated by finding near-duplicates of the 43 materials produced by Berkeley's A-lab in the world's largest collections of inorganic structures, the Inorganic Crystal Structure Database and Materials Project.

To help future self-driving labs successfully identify novel materials, we propose navigation maps of the materials space where any new structure can be quickly located by its invariant descriptors similar to a geographic location on Earth.

Keywords: materials space, crystal structure, isometry invariant, continuous metric

1 Introduction: how is the materials space defined?

The chemical space of all possible molecules is often estimated at the scale of 10^{60} [1]. Similar numbers are quoted for potential materials, though different polymorphs such as diamond and graphite have the same chemical composition and hence can only be distinguished by their geometry. When materials are claimed to be novel amongst

already known ones, we need to rigorously define what constitutes two materials being the "same or different" [2]. The definition of a *crystal structure* was finalised in the periodic case in [3], so we focus on ideal periodic crystals (briefly, *crystals*) as formalised below. When a material is disordered, we consider its closest periodic analogue.

A crystal is usually given by a basis of vectors $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ in Euclidean space \mathbb{R}^3 and a motif of atoms with chemical elements and fractional coordinates in this basis. If we forget about chemical elements, the atomic centres p_1, \ldots, p_m can be considered zero-sized points in the primitive unit cell $U = \{t_1\mathbf{v_1} + t_2\mathbf{v_2} + t_3\mathbf{v_3} \mid t_1, t_2, t_3 \in [0, 1)\}$ defined by the basis $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$. In dimension 2, the second picture of Fig. 1 highlights the square cell U with the orthonormal basis $\mathbf{v_1}, \mathbf{v_2}$. Then the underlying periodic point set of any crystal consists of infinitely many points $p_i + c_1\mathbf{v_1} + c_2\mathbf{v_2} + c_3\mathbf{v_3}$ for $i = 1, \ldots, m$ and integer coefficients $c_1, c_2, c_3 \in \mathbb{Z}$. Infinitely many different pairs of a basis (or a primitive cell) and a motif M generate pointwise identical crystals, see a detailed discussion of this ambiguity of the traditional definition in [3, section 2].

Fig. 1 Almost any tiny perturbation discontinuously scales up a primitive cell and makes unreliable any comparison based on cells or motifs. This discontinuity was resolved without relying on cells [4].

Because atoms vibrate [5, chapter 1], their fractional coordinates are always uncertain and will slightly deviate under repeated measurements even on the same instrument. Almost any displacement of one atom breaks the symmetry and can arbitrarily scale up a primitive unit cell as in Fig. 1. This discontinuity of a reduced cell [6] was experimentally reported in 1965 [7, p. 80] and remained unresolved until 2022 [4] when all periodic crystals in the Cambridge Structural Database (CSD) [8] were distinguished within two days (now within an hour) on a modest desktop computer. Several unexpected duplicates with identical geometries (almost to the last decimal place in all cell parameters and atomic coordinates) but with different chemistry are under investigation by five journals for data integrity [9, section 6].

Because crystal structures are determined in a rigid form, there is no sense in distinguishing crystal representations related by a *rigid motion* (a composition of translations and rotations in \mathbb{R}^3), which change a basis and atomic coordinates. On the other hand, there is no sense to fix any threshold $\varepsilon > 0$ that would allow us to call crystals the "same" if all their atomic centres (without chemical attributes) can be matched up to ε -perturbations. Indeed, any periodic point sets can be connected by sufficiently many ε -perturbations [9, Proposition 2.10], which makes the classification based on any threshold $\varepsilon > 0$ trivial due to the transitivity axiom saying that if S is equivalent to Q, and Q is equivalent to T, then S is equivalent to T [3, section 1].

2

Hence a rigorous way to classify crystals under rigid motion, is to define the *crystal* structure as a rigid class of periodic point sets, see [3, Definition 6]. Then any deviations of atomic positions are not ignored but continuously quantified by a distance metric between different rigid classes. This definition would remain impractical unless we can efficiently separate rigid classes by quickly computable *invariants* that are numerical properties preserved under rigid motion. The chemical composition written as percentages of chemical elements is such an invariant but is *incomplete* because many polymorphs have the same composition but can not be matched by rigid motion.

In the sequel, we will consider the sightly weaker equivalence of *isometry* (any distance-preserving transformation in \mathbb{R}^3), which is a composition of rigid motion and reflections. Because mirror images can be distinguished by a suitable sign of orientation, so the main difficulty is to classify periodic point sets under isometry.

When comparing crystals as periodic sets of atomic centres without chemical attributes, it might seem that all chemistry is lost. However, the fact that all (more than 850 thousand) periodic crystals in the CSD (apart from the investigated duplicates) can be distinguished by isometry invariants in section 2 implies that no information is lost so that all chemistry under standard conditions such as temperature and pressure is in principle reconstructable from sufficiently precise atomic geometry.

This Crystal Isometry Principle (CRISP) first appeared in 2022 [9, section 7] and was inspired by Richard Feynman's Fig.1-7 in [5, chapter 1], which distinguished 7 cubic crystals by their cube size in the first lecture "Atoms and motion", see Fig. 2 (left). More importantly, when we consider atoms only as zero-sized points, we can study all periodic structures in a common continuous space below.

Definition 1 (space of periodic materials). The *Crystal Isometry Space* $CRIS(\mathbb{R}^3)$ is the space of isometry classes of all periodic sets of points without atomic attributes.

Because (the isometry classes of) any periodic set of points has a unique location in $\operatorname{CRIS}(\mathbb{R}^3)$, all known materials can be considered 'visible stars' in this continuous universe, while any periodic crystal discovered in the future will appear at its own position like a 'new star', see Fig. 2 (right). Not every position in $\operatorname{CRIS}(\mathbb{R}^3)$ is realizable by a material because inter-atomic distances cannot be arbitrary in the same way as not every location on Earth is habitable. However, mapping the whole space $CRIS(\mathbb{R}^3)$ by invariant coordinates enables a proper exploration with a geographic-style map.

If we do not restrict the motif size, the space CRIS is infinite dimensional. However, if we consider all periodic sets with exactly m points in a motif, the resulting subspace CRIS(\mathbb{R}^3 ; m) has dimension 3m + 3 due to m triples x, y, z of atomic coordinates and 6 parameters of a unit cell, of which 3 are neutralised by translations along basis vectors. Alternatively, we can define a unit cell by 3 basis vectors with 3 coordinates, of which 6 are neutralised by 3+3 parameters of translations and rotations in \mathbb{R}^3 .

In the partial case m = 1, $\operatorname{CRIS}(\mathbb{R}^3; 1)$ is a continuous 6-dimensional space of 3D lattices, which was previously cut into 14 disjoint subspaces of Bravais classes [10] but is now parametrized by complete invariants [11]. Continuous maps of the simpler 3-dimensional space $\operatorname{CRIS}(\mathbb{R}^2; 1)$ of 2D lattices recently appeared in [12], [13], [14].

The full space $\operatorname{CRIS}(\mathbb{R}^3) = \bigcup_{m=1}^{+\infty} \operatorname{CRIS}(\mathbb{R}^3; m)$ is a union of infinitely many subspaces fr $m = 1, 2, 3, \ldots$ such that any periodic set with m points in a cell is infinitesimally close to infinitely many subspaces of sets with $2m, 3m, \ldots$ points in a primitive cell. Indeed, perturbations in Fig. 1 arbitrarily extend any given cell and make the extended cell primitive by a tiny displacement of any atom and all its translational copies. Crystals should be continuously compared only across multiple subspaces, not within one subspace $\operatorname{CRIS}(\mathbb{R}^3; m)$ for a fixed number m of atoms.

Any database of periodic crystals is a finite sample from the continuous space $CRIS(\mathbb{R}^3)$. The first contribution is continuous maps of the world's five largest databases on $CRIS(\mathbb{R}^3)$ projected to various structural invariants. The second contribution is the local novelty distance based on generically complete invariants whose utility is demonstrated by identifying closest neighbors of the 43 A-lab crystals in the Inorganic Crystal Structure Database (ICSD) [15] and Materials Project (MP) [16].

2 Methods: invariant-based novelty distance metric

This section introduces a new metric LND (Local Novelty Distance) that satisfies all metric axioms and continuously quantifies in real time a deviation of any newly synthesized crystal from its nearest neighbor in an existing structural database.

2.1 Generically complete and continuous structural invariants

Definition 2 reminds us of the Pointwise Distance Distribution (PDD), which suffices together with a lattice to reconstruct any generic periodic point set $S \subset \mathbb{R}^3$ up to isometry by [4, Theorem 4.4]. Generic means any set apart from a singular subspace of measure 0, e.g. almost any tiny perturbation of atoms makes every crystal generic.

The PDD is a matrix of inter-point distances and is stronger than the Pair Distribution Function (PDF) [17] in the sense that PDD can be simplified to PDF but distinguishes homometric structures [18] that have the same PDF [4, section 3].

Definition 2 (isometry invariant PDD(S;k)). Let $S \subset \mathbb{R}^n$ be a periodic point set with a motif $M = \{p_1, \ldots, p_m\}$. Fix an integer $k \geq 1$. For every point $p_i \in M$, let

 $d_1(p) \leq \cdots \leq d_k(p)$ be the distances from p to its k nearest neighbours within the full infinite set S not restricted to any cell. The matrix D(S;k) has m rows consisting of the distances $d_1(p_i), \ldots, d_k(p_i)$ for $i = 1, \ldots, m$. If any $l \geq 1$ rows are identical to each other, we collapse them into a single row and assign the weight l/m to this row. The resulting matrix of maximum m rows and k+1 columns including the extra (say, 0-th) column of weights is called the *Pointwise Distance Distribution* PDD(S;k).

In Definition 2, any point $p_i \in M$ can have several different neighbours at the same distance but the k smallest distances (without any indices or types of neighbours) are always well-defined. The matrix PDD(S; k) has ordered columns according to the index of neighbours but unordered rows because points of a motif of S are considered unordered. We can add chemical elements or atomic weights as extra attributes to the rows of PDD(S; k) but the pure geometric information will suffice in practice.

We can compare PDD matrices that have same number of columns and possibly different numbers of rows by interpreting PDD(S;k) as a distribution of unordered rows (or points in \mathbb{R}^k) with weights or probabilities. One metric on such weighted distributions is the Earth Mover's Distance (EMD), which was previously used in [19] for chemical compositions from the ICSD. If any point is perturbed up to ε in Euclidean distance, any inter-point distance changes up to 2ε .

This upper bound of 2ε formally follows from the triangle axiom of a distance metric, which is essential needed for reliable clustering. If the triangle axiom fails with any positive error, outputs of widely used clustering algorithms such as k-means and DBSCAN may not be trustworthy [20]. The EMD is a proper metric on weighted distributions (hence on PDD matrices) satisfying all metric axioms [21, Appendix].

If the number k of neighbours increases to infinity, the asymptotic behaviour of distances to neighbours is described in terms of the Point Packing Coefficient below.

Definition 3 (Point Packing Coefficient PPC). Let $S \subset \mathbb{R}^3$ be a periodic point set with m atoms in a unit cell U. The Point Packing Coefficient is $PPC(S) = \sqrt[3]{\frac{\operatorname{vol}(U)}{mV_3}}$, where $\operatorname{vol}(U)$ is the volume of U, $V_3 = \frac{4}{3}\pi$ is the volume of the unit ball in \mathbb{R}^3 .

The distances in each row of PDD(S; k) asymptotically increase as $PPC(S)\sqrt[3]{k}$ by [9, Theorem 13]. This asymptotic behaviour motivates the simplified invariants below.

Definition 4 (invariants AMD, ADA, PDA). The Average Minimum Distance $AMD_k(S)$ is the weighted average of the k-th column of PDD(S; k). The Average Deviation from Asymptotic is $ADA_k(S) = AMD_k(S) - PPC(S)\sqrt[3]{k}$ for $k \ge 1$. The Pointwise Deviation from Asymptotic is the matrix PDA(S; k) obtained from PDD(S; k) by subtracting $PPC(S)\sqrt[3]{k}$ from any distance in row i and column k for $i, k \ge 1$.

The invariants AMD_k and ADA_k form vectors of length k, e.g. set $AMD(S;k) = (AMD_1(S), \ldots, AMD_k(S))$ and $ADA(S;k) = (ADA_1(S), \ldots, ADA_k(S))$. These vectors can be compared by many metrics. The metric $L_{\infty}(u, v) = \max_{i=1,\ldots,k} |u_i - v_i|$ for any vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^k$ preserves the intuition of atomic displacements in the following sense. If S is obtained from Q by perturbing every point up to a small ε ,

then $L_{\infty}(AMD(S; k), AMD(Q; k)) \leq 2\varepsilon$ by [9, Theorem 9]. Other distances such as Euclidean can be considered but will accumulate a larger deviation depending on k.

All invariants above and metrics on them are measured in the same units as original coordinates, i.e. in Angstroms for crystals given by Crystallographic Information Files (CIFs). The Point Packing Coefficient PPC(S) was defined as the cube root of the cell volume per atom (of the same radius 1\AA) and can be interpreted as an average radius of balls 'packed' in a unit cell. So PPC(S) is roughly inverse proportional to the physical density but they are exactly related only when materials have the same average atomic mass (total mass of atoms in a unit cell divided by the cell volume).

While $AMD_k(S)$ monotonically increases in k, the invariants $ADA_k(S)$ can be positive or negative as deviations around the asymptotic $PPC(S)\sqrt[3]{k}$. Fig. 3 reveals geometric differences between the mainly organic databases CSD and Crystallography Open Database (COD) [22] versus the more inorganic collections ICSD and MP.

Fig. 3 The averages of ADA_k and standard deviations (1 sigma shaded) vs $\sqrt[3]{k}$ for four databases. COD

The first average of $ADA_1 \in [-0.25, -0.17]$ in the top images of Fig. 3 can be explained by the presence of many hydrogen atoms, which have distances smaller than PPC(S) to their first neighbor in most organic materials. Indeed, hydrogens are usually bonded at distances less than 1.2Å, while PPC(S) is often larger than 1.2Å because most chemical elements have van der Waals radii above 1.2Å [23].

For inorganic materials, metal atoms or ions have relatively large distances to their first neighbors, so the average ADA_1 is in [0.58, 0.62] in the bottom images of Fig. 3.

For all types of materials in Fig. 3, the value of ADA_k experimentally converges to 0 on average meaning that there is no need to substantially increase k because the important structural information emerges for smaller indices k of neighbors.

If we increase k, the matrix PDD(S; k) and hence the vector ADA(S; k) become longer by including distance data to further neighbors but all initial values remain the same. Hence we consider k not as a parameter that changes the output but as a degree of approximation similarly to the number of decimal places on a calculator.

The convergence $ADA_k \to 0$ as $k \to +\infty$ justifies computing the distance L_{∞} between ADA vectors up to a reasonable k. In practice, we use k = 100 because all ADA_k for $k \ge 100$ are close to 0 (the range of 1 sigma between ± 0.2 Å) in Fig. 3.

2.2 Novelty distance based on practically complete invariants

This subsection introduces the Local Novelty Distance LND(S; D) of a periodic crystal S as a distance to the closest neighbor Q of S in a given dataset D.

The new distance LND is measured as a metric between the invariants PDA(S; k)and PDA(Q; k) for k = 100, motivated as follows. First, the invariants PDD(S; 100)distinguished all non-duplicate periodic crystals in the CSD. Second, for a generic periodic set S (away from a measure 0 subspace), PDD(S; k) with a big enough k and a lattice of S suffices to reconstruct S uniquely under isometry in \mathbb{R}^n by [4, Theorem 4.4]. Finally, distances to k-th neighbors in PDD(S; k) asymptotically increase as $PPC(S)\sqrt[3]{k}$. If crystals S, Q have different $PPC(S) \neq PPC(Q)$, the distance L_{∞} between corresponding rows of PDD matrices likely equals the expected largest difference in the final k-th colimn, which ignores all neighbors with smaller indices. Hence subtracting $PPC(S)\sqrt[3]{k}$ in Definition 4 makes any metric on PDAs more informative than on PDDs. Definition 5 introduces a metric on PDA matrices.

Definition 5 (Earth Mover's Distance EMD [21]). Consider any matrix PDA(S; k) as a distribution of rows $R_i(S)$ with weights $w_i(S)$ for $i = 1, \ldots, m(S)$ such that $\sum_{i=1}^{m} w_i = 1$. The Earth Mover's Distance EMD(PDA(S; k), PDA(Q; k)) = m(S) m(Q)

 $\min_{f_{ij}} \sum_{i=1}^{m(S)} \sum_{j=1}^{m(Q)} f_{ij} L_{\infty}(R_i(S), R_j(Q)) \text{ is minimized for all real } f_{ij} \ge 0 \text{ (called flows)}$

subject to the conditions $\sum_{i=1}^{m(S)} f_{ij} \le w_j(Q), \sum_{j=1}^{m(S)} f_{ij} \le w_i(S), \sum_{i=1}^{m(S)} \sum_{j=1}^{m(Q)} f_{ij} = 1.$

The first condition $\sum_{j=1}^{m(Q)} f_{ij} \leq w_i(S)$ means that not more than the weight $w_i(S)$ of the component $R_i(S)$ 'flows' into all components $R_j(Q)$ via 'flows' f_{ij} for $j = 1, \ldots, m(Q)$. The second condition $\sum_{i=1}^{m(S)} f_{ij} = w_j(Q)$ means that all 'flows' f_{ij} from $R_i(S)$ for $i = 1, \ldots, m(S)$ 'flow' into $R_j(Q)$ up to the maximum weight $w_j(Q)$. The last condition $\sum_{i=1}^{m(S)} \sum_{j=1}^{m(Q)} f_{ij} = 1$ forces to 'flow' all rows $R_i(S)$ to all rows $R_j(Q)$.

Definition 6 (Local Novelty Distance LND(S; D)). Let D be a finite dataset of periodic point sets. Fix an integer $k \ge 1$. For any periodic point set S, the Local Novelty Distance $\text{LND}(S; D) = \min_{Q \in D} \text{EMD}(\text{PDA}(S; k), \text{PDA}(Q; k))$ equals the shortest

distance L_{∞} from S to its nearest neighbor Q in the given dataset D.

If S is already contained in the dataset D, then LND(S; D) = 0, so S cannot be considered novel. More practically, a newly synthesized periodic crystal S can be a near-duplicate of some known Q. Then LND(S; D) is small as justified by Theorem 7.

The packing radius r(Q) is the minimum half-distance between any points of Q.

Theorem 7. If S is obtained from a crystal Q in a dataset D by perturbing every point of Q up to $\varepsilon < r(Q)$, then $\text{LND}(S; D) \leq 2\varepsilon$. To get S from a crystal $Q \in D$ with LND(S; D) < 2r(Q), some atom of Q should be perturbed by at least 0.5LND(S; D).

Theorem 7 is proved in Appendix A. The distance LND(S; D) is called *local* because Definition 6 uses the first nearest neighbor of S in D. Another novelty of S can be characterized with respect to a global distribution of all crystals in D, which we will explore in a forthcoming work. The local novelty is more urgently needed to tackle the growing crisis of duplication in experimental and simulated databases, some of which were publicly rebutted in [24], [25], and [26], [3, Tables 1-2 in section 6], respectively.

2.3 Insufficiency of past invariants and similarities of crystals

This subsection only briefly reviews the past approaches to classify crystals and quantify their similarities. Some widely used similarities such as the Root Mean Square Deviation (RMSD) [27] deserve their own detailed discussions in another forthcoming work. The shape (isometry class) of a reduced cell with standard settings [28] were thoroughly developed to uniquely represent any periodic crystal. The resulting conventional representation can be theoretically considered a complete isometry invariant but discontinuously changes under almost any perturbation in practice.

Indeed, perturbations in Fig. 1 apply to any crystal and can arbitrarily extend a reduced cell to a larger cell whose size cannot be reduced. Searching for a small perturbation (pseudo-symmetry) to make a cell smaller [29] inevitably uses thresholds and leads to a trivial classification due to the transitivity axiom, see [3, section 1].

The COMPACK algorithm [27] outputs an RMSD quantity by comparing finite portions of only molecular crystals. Its implementation in Mercury also uses thresholds for acceptable deviations of atoms and angles. Even if these thresholds are ignored (made large), the algorithm chooses one molecule in a unit cell and 14 (by default) closest molecules around it. The resulting molecular group depends on a central molecule; for co-crystals containing geometrically different molecules or the same molecule in non-equivalent positions, matching these molecules by rigid motion does not match the full crystal. Even for simple crystals based on a single molecule as is often the case in Crystal Structure Prediction [30], the choice of 14 (or any other number of) neighbours can be discontinuous when a central molecule has 14th and 15th neighbours at the same distance. Selected clusters of molecules in two crystals require an optimal

alignment, which is a hard problem because atomic sets can contain numerous indistinguishable atoms, so the optimization must consider many potential permutations. This problem of exponentially many permutations was recently resolved in [31] but a choice of a single atomic environment in a crystal remains discontinuous.

Other similarities based on all atomic environments such as SOAP [32] and MACE [33] use a Gaussian deviation and a cut-off radius for interatomic interactions to convert a periodic set of discrete points to a complicated smooth function. This function decomposes into an infinite sum of spherical harmonics whose truncation up to a certain order becomes incomplete, which will be discussed in future work.

The PXRD similarity compares crystals through powder diffraction patterns that are identical for homometric structures [18], some of which were distinguished even by AMD_2 in [9, appendix A]. The PXRD as implemented in Mercury also fails the triangle inequality but runs faster than the RMSD and SOAP similarities.

In summary, the past approaches through conventional representations and environment-based similarities separately focused on two important complementary properties: completeness and continuity. The problem of combining these two properties was first stated in [34] for lattices and then extended in [35] to a complete invariant isoset of any periodic point set and a continuous metric approximated with a small error factor by an algorithm whose time polynomially depends on the motif size [36].

3 Results: novelty of materials and navigation maps

This section describes how the 43 materials reported by A-lab can be automatically positioned relative to the ICSD and MP within the full materials space $CRIS(\mathbb{R}^3)$.

Among the 43 materials whose CIFs are available in the supplementary materials in [37], only 32 are pure periodic without any disorder, 10 have *substitutional* disorder with one or more sites occupied by multiple atomic types, and one has *positional* disorder with an atom occupying any of 4 positions with occupancy 0.5.

Closest neighbors within the ICSD and Materials Project for each A-lab crystal were found as follows. Using binary search on ADA(S; 100) vectors with the metric L_{∞} , we found the nearest 100 neighbors for each A-lab crystal within each database. These neighbors were then re-compared by Earth Mover's Distance on the stronger invariants PDD(S; 100). This EMD metric also outputs which atomic types and/or occupancies were correctly matched and which were not. Since most A-lab crystals had several geometric nearest neighbors with small distances EMD, we selected the neighbor with the most similar composition as measured by element mover's distance [19], which are listed in Tables 2 and 4 below. The local novelty distance of each A-lab crystal is not more than the Earth Mover's Distance listed in the column EMD, 100.

The time taken in each step of the process described above is given in Table 1 below. All experiments were performed on a modest desktop computer with the specifications AMD Ryzen 5 5600X (6-core), 32GB RAM, Python 3.9.

Stage	ICSD, seconds	MP, seconds			
Binary search on $ADA(S; 100)$ in each database	3.023	2.450			
PDA(Q; 100) for 100 neighbors Q found by ADA	5.272	5.990			
EMD on PDAs for 100 neighbors found by ADA	0.535	0.742			
Elemental Mover's Distance (ElMD) for 100 neighbors	9.534	9.737			
Table 1 Times (geograde) to complete each store of the process of finding property wighting					

Table 1 Times (seconds) to complete each stage of the process of finding nearest neighborsin the ICSD and Materials Project for all A-lab crystals on a modest desktop computer.

3.1 Local novelty distances of the A-lab materials vs the ICSD

Table 2 lists the nearest neighbors found in the ICSD for each A-lab crystal. We used a snapshot of the ICSD in 2019, while the GNoME AI project used a snapshot from 2021. Despite this, two A-lab crystals were found to already exist in the ICSD: $KNaP_6(PbO_3)_8$ was matched with ICSD 182501 reported in 2011 [38], and $MnAgO_2$ was matched with ICSD 670065 reported as a hypothetical structure in 2015 [39].

In particular, $MnAgO_2$ was one of three crystals that the later rebuttal said was synthesized successfully [24]. They state that the material ICSD 139006 was first reported in 2021 [40], after the snapshot used to train the GNOME AI, and so was not included in the original training data and could be considered a success.

We found a closer geometric neighbor of $MnAgO_2$ in the ICSD prior to the 2021 snapshot, which was missed by [24] using a unit cell search because the unit cell of ICSD 670065 significantly differs from that of the A-lab version or ICSD 139006, with the former listing its space group as A 2/m and the latter two having space group C 2/m, see Fig. 4. This case supports the robustness of a search based on continuous invariants independent of a unit cell, which can find near-duplicates despite disagreement on a space group, which changes under almost any perturbation.

Fig. 4 Left: $MnAgO_2$ synthesized by A-lab. Middle: ICSD entry 670065 with the same composition and EMD = 0.097Å found by structural invariants in Table 2, though its unit cell is very different from the cell of $MnAgO_2$. Right: another ICSD entry 139006 from 2021 matched by [24] and found by unit cell search, but is more distant from $MnAgO_2$ by EMD = 0.368Å on invariants PDA(S; 100).

Aside from the two structures above, all other A-lab crystals were found to have a geometric near-duplicate in the ICSD, often with a different composition. Many of these near-duplicates involve the substitution of only one atom, replacing a disordered site with a fully ordered one or adjusting the occupancy ratios of atoms at a site.

	A-lab name	ICSD id	ICSD composition	EMD, 100 site mismatches	
-	Ba ₂ ZrSnO ₆ *	181433	Ino 5Nbo 5BaO2	0.003	$\operatorname{Zr}_{0.5}\operatorname{Sn}_{0.5} \leftrightarrow \operatorname{Nb}_{0.5}\operatorname{In}_{0.5}$
	Bae Na ₂ Ta ₂ V ₂ O ₁₇	97524	$Ba_6Na_2Ru_2V_2O_{17}$	0.092	$Ta \leftrightarrow Ru$
	$Ba_6Na_2V_2Sb_2O_{17}$	97524	$Ba_6 Na_2 Ru_2 V_2 O_{17}$	0.081	$\mathrm{Sb}\leftrightarrow\mathrm{Ru}$
	$Ba_0Ca_2La_4(Fe_4O_{15})_2^*$	72336	Ca ₂ La ₄ Fe ₂ Ba ₀ O ₂₀	0.192	$(Ca_{0,42}La_{0,57})_{2}Ba \leftrightarrow$
	9 5 4 4 15/2		5 4 8 9 50		$(a_{0.43} - b_{0.57})^2$ Ca _{0.22} La _{0.67} (Ca _{0.5} Ba _{0.5}) ₂
	$CaCo(PO_2)_4$	412558	MnP ₂ O ₆	0.173	$CoCa \leftrightarrow Mn_2$
	CaFe ₂ P ₂ O ₂	407045	CaVNiP	0.157	$Fe_{a} \leftrightarrow VNi$
	$CaGd_{a}Zr(GaO_{a})_{4}^{*}$	202850	Cao or Zro or Gdo or	0.123	GaZrGdCa ↔
	2 (11-3/4		$Ga_{4,05}O_{12}$		Gao 52 Zro 40 Cao 22 Gdo 68
	CaMn(PO ₂) ₄	412558	MnP _o O _c	0.132	$Ca \leftrightarrow Mn$
	$CaNi(PO_2)_4$	37136	NiCoP ₄ O ₁₀	0.204	$Ca \leftrightarrow Co$
	$FeSb_2Pb_4O_{12}^*$	65839	$CrSb_2Pb_2 \circ O_1\circ$	0.086	Feo or \leftrightarrow Croor
	$H_{f_0}Sb_0Pb_4O_{10}$	84759	$W_{4,40}Sn_{11,7}Pb_{17,0}Or_{1,0}$	0.086	SbHf \leftrightarrow Sn _{0.79} W _{0.99}
	$\ln Sb_{2}(PO_{4})_{a}$	166834	$InSb_{2}P_{2}O_{24}$	0.21	SbIn \leftrightarrow In _o -Sb _o -
	$InSb_2Pb_4O_{12}$	262198	$Bi_0Sn_0O_7$	0.439	$SbOIn_{2}Pb_{2} \leftrightarrow Sn_{2}Bi_{2}O$
	$K_{a}TiCr(PO_{a})_{a}$	280999	CrTiK_P_O	0.044	TiCr ↔
	1121101(1 04)3	200000	01111121 3012	0.011	Tio a Cro o Tio o Cro o
	K, MøFe ₂ (PO ₄)-	161484	MøFea K (PzOaa	0.075	$FeMg \leftrightarrow Mg_{a} \approx Fe_{a} = z$
	K_{4} TiSn ₂ (PO ₂).	250088	Tio aroSno KPO-	0.086	$TiSn_{2} \leftrightarrow Ti_{2} \circ Sn_{2} = i$
	114 11013(1 05)4	2000000	10.253510.747111 05	0.000	$T_{10.26} S_{10.74}$
	KBaGdWO	60499	WCaBa ₂ O ₂	0.009	$GdK \leftrightarrow CaBa$
	KBaPrWO.	60499	WCaBa ₂ O ₆	0.053	$PrK \leftrightarrow CaBa$
	$KMn_2O_2^*$	261406	Ka va MnOa	0.016	$K_{\alpha,\tau} \leftrightarrow K_{\alpha,\alpha\alpha\tau}$
	$KNa_{2}Ga_{2}(SiO_{2})$	411328	SiNaGaO	0.27	$SiGaK \leftrightarrow GaSiNa$
	$KN_{2}P_{2}(PbO_{2})_{2}*$	182501	KNaP-Ph-O-	0.005	
	$KNaTi_6(PO_7)_8$	67539	Ka az Nag az TiPOz	0.000	$NaK \leftrightarrow Na_{a} \circ K_{a} \circ T$
	$KPr_{*}(Si_{*}O_{*})^{*}$	153272	$K_{0.05} R_{0.95} R$	0.16	(K_{-}, Pr_{-})
	111 19(013/013/2	100212	110161 19026	0.10	$PrK_{}Pr_{}$
	Mg_MnNi_O_	80306	MnNi-Mg-O-	0.043	$M_{0.25} \stackrel{10.75}{\longrightarrow} M_{0.25} \stackrel{10.75}{\longrightarrow} M_{0.25$
	Mg_NiO_*	60496	C_{11} , M_{σ_1} , O	0.040	$M\sigma_{}Ni_{}\leftrightarrow M\sigma_{}Cu_{}$
	$M_{g}C_{u}P_{-}O_{-}*$	69576	$C_{0.2}Mg_{0.8}O$	0.005	$Mg_{0.75} (10.25) (1000.8) ($
	$MgNi(PO_{-})$	37136	NiCoP . O	0.141	$Mg_{0.5} \leftrightarrow C_0$
	MgTi NiO	171583	NiMeTi O	0.038	$MgNi \leftrightarrow Mg$ Ni
	$MgTi_{2}(PO_{1})$	419418	MnTi P.O.	0.133	$Mg \leftrightarrow Mn$
	$MgV_1Cu_2O_1$	69731	$MgCu_{24}$	0.110	$CuMg \leftrightarrow Mg_{2} = Cu_{2} = 0$
	$Mn_{\rm e} VPO_{\rm e}$	20296	$Mn_2P_2O_2$	0.21	$V \leftrightarrow P$
	$Mn_2 V I O_7$ $Mn_2 Zn_2 (NiO_2)_2$	625	$MgCu_2Mn_2O_2$	0.186	MnZnNi ↔ MgCuMn
	$Mn_4 2n_3(110_6)_2$ $Mn(P_2 O_2)_4$	67514	Fe-PaQaa	0.126	$Mn \leftrightarrow Fe$
	$MnAgO_{-}$	670065	$MnAgO_{-}$	0.097	
	Na Ca $Ee(PO_1)$	85103	FeNa P. Ca. O.	0.153	FeCa-Na 👄
	1143041810(104)14	00100	101031 140018056	0.100	Ca. Fe. NaCa.
	Na Mg Fe (PO)	200238	Na Fa P O	0.220	$POM_{\sigma} \leftrightarrow N_{2} F_{0.83}$
	NaCaMgEe(SiO ₂).*	172120	NaCaMgCrSi O	0.075	$(MgEeNaCa)_{rag} \leftrightarrow MgCr_{rag}$
	NaCalligre(5103)4	172120	Wa0aWg01514012	0.015	NaCa
	$NaMnFe(PO_4)_2$	200238	$Na_2Fe_3P_3O_{12}$	0.242	$\mathrm{POMn}_2 \leftrightarrow \mathrm{Na}_2\mathrm{Fe}_2$
	$Sn_2Sb_2Pb_4O_{13}$	262198	$\operatorname{Bi}_2\operatorname{Sn}_2\operatorname{O}_7$	0.461	$SbOSnPb_2 \leftrightarrow SnBi_3O$
	$Y_3In_2Ga_3O_{12}$	185862	$Y_3Ga_5O_{12}$	0.104	$In \leftrightarrow Ga$
	$Zn_2Cr_3FeO_8$	196119	$ZnCr_2O_4$	0.022	$Fe \leftrightarrow Cr$
	$\operatorname{Zn_3Ni_4(SbO_6)_2}^*$	180711	$Ti_{0.18}Zr_{0.33}ZnO_2$	0.162	$Ni_{0.66}Sb_{0.33} \leftrightarrow$
					$Ti_{0.17}Zn_{0.5}Zr_{0.33}$
	Zr. Sh. Ph. O.	65054	TiShPhO	0.12	$ShZr \leftrightarrow Ti_{2}$, Sh_{2} ,

 $Zr_2Sb_2Pb_4O_{13}$ 65054 TiSbPb_{1.97}O_{6.5} 0.12 SbZr \leftrightarrow Ti_{0.5}Sb_{0.5} **Table 2** Close neighbors of each A-lab crystal in the ICSD. The ICSD entry with the smallest element mover's distance [19] was selected from the list of 100 nearest neighbors by ADA(S; 100). Disordered crystals are marked with an asterisk *.

These structural analogues of A-lab's reported materials are not surprising as the GNoME AI [41] used atomic substitution on existing crystals to generate potential new ones without substantially changing the atomic geometry. The fact that pre-existing structures in the ICSD were missed by the later rebuttal [24] suggests that a more robust method is needed for comparing structures in the aid of materials discovery.

3.2 Local novelty distances of the A-lab materials vs MP

The Materials Project contains a substantial number of theoretical structures, many of which are obtained by substituting atoms in existing structures with plausible alternatives, a strategy also employed by the GNoME AI which generated the crystals later synthesized by Berkeley's A-lab. Despite the substitution patterns used by GNoME being tuned to prioritize discovery and not repeat data, 42 of the 43 A-lab crystals were found to already exist in the Materials Project, all of which predate the March 2021 snapshot used to train the GNoME AI and hence were part of its training data.

As the Materials Project does not model disorder, no match was found for the positionally disordered KMn_3O_6 . However, its nearest neighbor was found in the ICSD (with a slight change in occupancy), and so all 43 A-lab crystals had already been hypothesized or synthesized prior to the beginning of the GNoME project. Table 3 below lists the 8 crystals, which have already been synthesized well before 2021.

A-lab name	Matching database entries	Source and date		
Ba ₆ Na ₂ Ta ₂ V ₂ O ₁₇	mp-1214664, Pauling file sd_1003187	[42], 2003		
$\operatorname{Ba}_6\operatorname{Na}_2\operatorname{V}_2\operatorname{Sb}_2\operatorname{O}_{17}$	mp-1214658, Pauling file sd_1003189	[42], 2003		
$CaGd_2Zr(GaO_3)_4$	mp-686296, ICSD 202850	[43], 1988		
$KNa_2Ga_3(SiO_4)_3$	mp-1211711, Pauling file sd_1707156	[44], 1982		
$KNaP_6(PbO_3)_8$	ICSD 182501	[45], 2011		
$KNaTi_2(PO_5)_2$	mp-1211611, Pauling file sd_1414297	[46], 1991		
Mn_2VPO_7	mp-1210613, Pauling file sd_1322766	[47], 2000		
$Y_3In_2Ga_3O_{12}$	mp-1207946, Pauling file sd_1704376	[48], 1964		
Table 3 The 8 reportedly new crystals synthesized by A-lab were found to				

already have been synthesized and uploaded to various databases before 2021.

 $Y_3In_2Ga_3O_{12}$ in Table 3 was one of the three crystals agreed to have been synthesized by the later rebuttal paper [24], as discussed in Section 3.1. Their earliest reference for this crystal dates to 2022 [49], again leading to the past conclusion that the crystal was novel from the perspective of the GNoME AI trained on data from 2021. We found that this crystal was reported in 1964 and uploaded to the Materials Project no later than 2018, and so would have been part of GNoME's training data.

The 10 substitutionally disordered A-lab crystals had matches in the Materials Project where disordered sites were replaced with multiple fully ordered sites of atoms in the same ratio; e.g. $FeSb_3Pb_4O_{13}$ matching mp-1224890 had a site $Fe_{0.25}Sb_{0.75}$ with multiplicity 4 replaced with $FeSb_3$. For completeness, this is noted in the site mismatches column of Table 4, listing all nearest neighbors in the Materials Project.

One pair of note is $CaGd_2Zr(GaO_3)_4$ & mp-686296, which have one atom swapped (Ga \leftrightarrow Zr). This Materials Project entry originates from ICSD 202850, listed in Table 2

A-lab name	MP ID	MP composition	EMD, 100	site mismatches
Ba ₂ ZrSnO ₆ *	1228067	Ba ₂ ZrSnO ₆	0.025	$\operatorname{Zr}_{0.5}\operatorname{Sn}_{0.5} \leftrightarrow \operatorname{ZrSn}$
$Ba_6Na_2Ta_2V_2O_{17}$	1214664	$Ba_6Na_2Ta_2V_2O_{17}$	0.029	0.0 0.0
$Ba_6Na_2V_2Sb_2O_{17}$	1214658	$Ba_6Na_2V_2Sb_2O_{17}$	0.021	
$Ba_9Ca_3La_4(Fe_4O_{15})_2^*$	1228537	Ba ₉ Ca ₃ La ₄ Fe ₈ O ₃₀	0.136	$Ca_{0 43}La_{0 57} \leftrightarrow Ca_{3}La_{4}$
$CaCo(PO_3)_4$	1045787	$CaCoP_4O_{12}$	0.090	0110 0101 0 1
$CaFe_2P_2O_9$	1040941	$CaFe_2P_2O_9$	0.114	
$CaGd_2Zr(GaO_3)_4^*$	686296	$CaGd_2ZrGa_4O_{12}$	0.069	$Ga \leftrightarrow Zr$
$CaMn(PO_3)_4$	1045779	$CaMnP_4O_{12}$	0.163	
$CaNi(PO_3)_4$	1045813	$CaNiP_4O_{12}$	0.151	
$FeSb_3Pb_4O_{13}^*$	1224890	$FeSb_3Pb_4O_{13}$	0.027	$\operatorname{Fe}_{0.25}\operatorname{Sb}_{0.75} \leftrightarrow \operatorname{FeSb}_{3}$
$Hf_2Sb_2Pb_4O_{13}$	1224490	$Hf_2Sb_2Pb_4O_{13}$	0.012	0.20 0.10 0
$In\tilde{S}b_3(PO_4)_6$	1224667	$InSb_3\tilde{P}_6O_{24}$	0.011	
$InSb_3Pb_4O_{13}$	1223746	$InSb_3Pb_4O_{13}$	0.029	
$K_2 TiCr(PO_4)_3$	1224541	K ₂ TiCrP ₃ O ₁₂	0.009	
K_4^2 MgFe ₃ (PO ₄) ₅	532755	$K_4 MgFe_3 P_5 O_{20}$	0.076	
$K_4 TiSn_2(PO_5)_4$	1224290	$K_4 TiSn_2 P_4 O_{20}$	0.014	
KBaGdWO ₆	1523079	KBaGdWO ₆	0.006	
KBaPrWO ₆	1523149	KBaPrWO ₆	0.012	
KMn ₂ O ₆ *	1223545	KMn ₂ O ₄	0.439	Not a match
KNa ₂ Ga ₂ (SiO ₄) ₂	1211711	KNa2Ga2Si2O12	0.022	
$KNaP_{\epsilon}(PbO_{2})^{4/3}$	1223429	KNaP ₆ Pb ₂ O ₂₄	0.174	$Na_{0.25}K_{0.25}Pb_{0.5} \leftrightarrow$
0 3/8		0 8 24		$NaKPb_2$
$KNaTi_2(PO_5)_2$	1211611	KNaTi ₂ P ₂ O ₁₀	0.012	2
$\operatorname{KPr}_{0}(\operatorname{Si}_{2}O_{12})_{2}^{3/2}*$	1223421	KProSicO2c	0.009	$K_{0,1}Pr_{0,0} \leftrightarrow KPr_{0,0}$
Mg ₂ MnNi ₂ O ₂	1222170	Mg2MnNi2O2	0.029	0.1 0.9 9
Mg ₂ NiO ₄ *	1099253	Mg ₂ NiO ₄	0.002	$Mg_{0.75}Ni_{0.25} \leftrightarrow Mg_2Ni$
MgCuP ₃ O ₇ *	1041741	MgCuP ₂ O ₇	0.093	$Mg_{0} \downarrow Cu_{0} \downarrow \leftrightarrow MgCu$
$MgNi(PO_2)_4$	1045786	MgNiP Q12	0.018	0.5 0.5 0
MgTi ₂ NiO ₆	1221952	MgTioNiOc	0.009	
MgTi ₄ (PO ₄) _c	1222070	MgTi PcOod	0.075	
$MgV_4Cu_2O_{14}$	1222158	$MgV_4Cu_2O_{14}$	0.060	
$Mn_{0}VPO_{7}$	1210613	Mn _o VPO ₇	0.125	
$Mn_4Zn_2(NiO_c)_2$	1222033	Mn ₄ Zn ₂ Ni ₂ O ₁₀	0.054	
$Mn_{\pi}(P_{2}O_{\pi})$	778008	$Mn_{\pi}P_{0}O_{00}$	0.123	
MnAgO ₂	996995	MnAgO ₂	0.098	
Na _o Ca _{to} Fe(PO _t) _t	725491	Na ₂ Ca ₂ FeP ₁ O ₂	0.031	
Na-Mg-Fe- (PO_{+})	1173791	$Na_Mg_Fe_P_{-14}O_{-56}$	0.028	
$NaCaMgFe(SiO_{4})_{12}$	1221075	NaCaM $_{\text{T}}$ ESi $_{12}$ O $_{48}$	0.026	(MgFeNaCa)
WaOawgre(5103)4	1221015	$140amgress_40_{12}$	0.020	MgEoNaCa
NaMnFe(PO_)	1173509	NaMnFeP O	0.032	marcina Ca
Sn Sh Ph O	1210056	$s_n s_b P_b O$	0.002	
$V_{12} = C_2 O_1$	1213030	$V_{12} = 0_{21} + 0_{13}$	0.020	
$1_3 III_2 Ga_3 O_{12}$	1207940	$1_3 III_2 Ga_3 O_{12}$	0.008	
$\Delta n_2 \text{ Ur}_3 \text{ FeU}_8$	1215741	$\Delta n_2 Or_3 reO_8$	0.014	NI: CL / NI: Cl
$\Delta n_3 N_4 (Sb O_6)_2^*$	1216023	$\Delta n_3 N_4 S D_2 O_{12}$	0.092	$\text{N1}_{0.67}\text{SD}_{0.33} \leftrightarrow \text{N1}_2\text{SD}$
$Zr_2Sb_2Pb_4O_{13}$	1215826	$Zr_2Sb_2Pb_4O_{13}$	0.025	

_

Table 4 Close neighbors of each A-lab crystal in the Materials Project. The Materials Project entry with the smallest element mover's distance [19] was selected from the list of 100 nearest neighbors by ADA(S; 100). Disordered crystals are marked with an asterisk *.

as the closest neighbor in the ICSD. The ICSD entry has disorder on the sites where atoms were swapped, whereas the A-lab and Materials Project versions have no disorder. We conclude that this crystal is not new, as these atoms could have been swapped to match the A-lab crystal with a different ordering of the disordered ICSD entry.

The GNoME paper used the Pymatgen structure matcher [50] to filter out duplicate structures, whose first three steps are quoted below:

- "1. Given two structures: s1 and s2
- 2. Optional: Reduce to primitive cells.
- 3. If the numbers of sites do not match, return False."

These steps are followed by several heuristic steps which involve finding deviations between atoms in the reduced unit cell. If step 2 above is optionally missed, step 3 can output False (no match) for identical crystals given with different non-primitive cells. If step 2 is enforced, step 3 will output False (no match) for any nearly identical crystals, whose primitive cells can arbitrarily differ due to a tiny atomic displacement as in Fig. 1. For the above reasons, our findings show that this method of comparing structures was insufficient for comparing structures to filter out existing duplicates from the data, resulting in the AI silently reproducing data in the training set.

3.3 A-lab crystals on continuous heatmaps of the ICSD and MP

All figures in this section show scatter plots of the 42 CIFs from the A-lab over heatmaps of the ICSD and MP. The only excluded CIF is the positionally disordered crystal KMn_3O_6 . On every map, the colour of any pixel with coordinates (x, y) indicates the number of crystals whose continuous invariants coincide with (x, y) after discretisation. To better visualise the hot spots of the maps, we excluded some outliers in the ICSD and MP, e.g. all crystals with densities higher than 10 g/cm³ in Fig. 5.

Fig. 5 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (density, ADA₁).

Fig. 6 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (PPC, ADA_1).

 $\label{eq:Fig.7} {\bf Fig.~7} \quad {\rm The~scatter~plot~of~A-lab~crystals~over~the~ICSD~and~MP~in~the~coordinates~(ADA_2,~ADA_3).}$

15

Fig. 8 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (ADA₅, ADA₄).

Fig. 9 The plot of A-lab crystals over the ICSD and MP in the coordinates (ADA1, ADA20).

16

Fig. 10 The plot of A-lab crystals over the ICSD and MP in the coordinates (ADA₂₀, ADA₁₀₀).

4 Conclusion: where to go in the materials space?

This paper introduced the materials space in Definition 1 as the *Crystal Isometry Space* containing all known and not yet discovered crystals at unique locations determined by sufficiently precise geometry of atomic centers without atomic types.

Definition 6 introduced the Local Novelty Distance (LND) based on generically complete invariants of periodic point sets. This LND shows how far away any periodic crystal is from its nearest neighbor in a given dataset. The ultra fast speed of LND allows us to find nearest neighbors from the world's largest databases within seconds on a modest desktop computer. Future work will develop another distance characterizing a global novelty or similarity of a crystal relative to a dataset.

Our finding that 42 of the 43 A-lab crystals existed prior to the GNoME project and were seemingly part of its training data but were later targeted for synthesis by the A-lab shows that both the AI's pipeline and the later selection process for materials to target for synthesis would have benefited from the introduction of isometry invariants to find nearest neighbors. As theoretical structures generated by GNoME were reintroduced into its training set, these duplicates can pollute the training data and introduce bias, but could be filtered out by continuous invariants. It is also crucial that the selection process for targets to synthesize by an automated laboratory avoids pre-existing crystals to justify the discovery of truly novel materials. The next step in exploring the materials space $CRIS(\mathbb{R}^3)$ is to understand the structure-property relations by visualize property values like mountainous landscapes in Fig. 2 (right). This work was supported by the EPSRC New Horizons grant "Inverse design of periodic crystals" (EP/X018474/1) and the Royal Society APEX fellowship "New geometric methods for mapping the space of periodic crystals" (APX/R1/231152) of the second author. We thank Andy Cooper FRS (the director of Materials Innovation Factory, Liverpool, UK), Robert Palgrave and Leslie Schoop for fruitful discussions of A-lab crystals and any reviewers for their valuable time and helpful suggestions.

References

- Orsi, M., Reymond, J.-L.: Navigating a 1e+60 chemical space (2024) https://doi. org/10.26434/chemrxiv-2024-bqd8c
- [2] Sacchi, P., Lusi, M., Cruz-Cabeza, A.J., Nauha, E., Bernstein, J.: Same or different – that is the question: identification of crystal forms from crystal structure data. CrystEngComm 22(43), 7170–7185 (2020)
- [3] Anosova, O., Kurlin, V., Senechal, M.: The importance of definitions in crystallography. IUCrJ 11, 453–463 (2024) https://doi.org/10.1107/S2052252524004056
- [4] Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals. Advances in Neural Information Processing Systems (NeurIPS) 35, 24625–24638 (2022)
- [5] Feynman, R.: The Feynman Lectures on Physics vol. 1, (1971)
- [6] Niggli, P.: Krystallographische und Strukturtheoretische Grundbegriffe vol. 1. Akademische verlagsgesellschaft mbh, ??? (1928)
- [7] Lawton, S., Jacobson, R.: The reduced cell and its crystallographic applications. Technical report, Ames Lab., Iowa State Univ. of Science and Tech., US (1965)
- [8] Ward, S.C., Sadiq, G.: Introduction to the cambridge structural database a wealth of knowledge gained from a million structures. CrystEngComm 22(43), 7143–7144 (2020)
- [9] Widdowson, D., Mosca, M.M., Pulido, A., Cooper, A.I., Kurlin, V.: Average minimum distances of periodic point sets - foundational invariants for mapping all periodic crystals. MATCH Comm. in Math. and in Computer Chemistry 87, 529–559 (2022)
- [10] Bravais, A.: Memoir on the systems formed by points regularly distributed on a plane or in space. J. École Polytech. 19, 1–128 (1850)
- [11] Kurlin, V.: A complete isometry classification of 3D lattices. arxiv:2201.10543 (2022)
- [12] Kurlin, V.: Mathematics of 2-dimensional lattices. Foundations of Computational

Mathematics **24**, 805–863 (2024)

- [13] Bright, M.J., Cooper, A.I., Kurlin, V.A.: Geographic-style maps for 2-dimensional lattices. Acta Crystallographica Section A 79(1), 1–13 (2023)
- [14] Bright, M.J., Cooper, A.I., Kurlin, V.A.: Continuous chiral distances for 2dimensional lattices. Chirality 35, 920–936 (2023)
- [15] Zagorac, D., Müller, H., Ruehl, S., Zagorac, J., Rehme, S.: Recent developments in the inorganic crystal structure database: theoretical crystal structure data and related features. Journal of applied crystallography 52(5), 918–925 (2019)
- [16] Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., et al.: Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL materials 1(1) (2013)
- [17] Terban, M.W., Billinge, S.J.: Structural analysis of molecular materials using the pair distribution function. Chemical Reviews 122, 1208–1272 (2022)
- [18] Patterson, A.: Homometric structures. Nature **143**, 939–940 (1939)
- [19] Hargreaves, C.J., Dyer, M.S., Gaultois, M.W., Kurlin, V.A., Rosseinsky, M.J.: The earth mover's distance as a metric for the space of inorganic compositions. Chemistry of Materials **32**, 10610–10620 (2020)
- [20] Rass, S., König, S., Ahmad, S., Goman, M.: Metricizing the euclidean space towards desired distance relations in point clouds. IEEE Transactions on Information Forensics and Security (2024)
- [21] Rubner, Y., Tomasi, C., Guibas, L.: The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)
- [22] Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quiros, M., Serebryanaya, N.R., Moeck, P., Downs, R.T., Le Bail, A.: Crystallography open database (cod): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic acids research 40(D1), 420–427 (2012)
- [23] Batsanov, S.S.: Van der waals radii of elements. Inorganic materials 37(9), 871– 885 (2001)
- [24] Leeman, J., Liu, Y., Stiles, J., Lee, S.B., Bhatt, P., Schoop, L.M., Palgrave, R.G.: Challenges in high-throughput inorganic materials prediction and autonomous synthesis. PRX Energy 3(1), 011002 (2024)
- [25] Chawla, D.S.: Crystallography databases hunt for fraudulent structures. ACS Central Science 9, 1853–1855 (2024) https://doi.org/10.1021/acscentsci.3c01209
- [26] Cheetham, A.K., Seshadri, R.: Artificial intelligence driving materials discovery?

perspective on the article: Scaling deep learning for materials discovery. Chemistry of Materials **36**(8), 3490–3495 (2024)

- [27] Chisholm, J., Motherwell, S.: Compack: a program for identifying crystal structure similarity using distances. J. Applied Cryst. 38, 228–231 (2005)
- [28] Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R.: TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Springer, ??? (2013)
- [29] Zwart, P., Grosse-Kunstleve, R., Lebedev, A., Murshudov, G., Adams, P.: Surprises and pitfalls arising from (pseudo) symmetry. Acta Cryst. D 64, 99–107 (2008)
- [30] Pulido, A., Chen, L., Kaczorowski, T., Holden, D., Little, M.A., Chong, S.Y., Slater, B.J., McMahon, D.P., Bonillo, B., Stackhouse, C.J., *et al.*: Functional materials discovery using energy–structure–function maps. Nature 543(7647), 657–664 (2017)
- [31] Widdowson, D., Kurlin, V.: Recognizing rigid patterns of unlabeled point clouds by complete and continuous isometry invariants with no false negatives and no false positives. Proceedings of Computer Vision and Pattern Recognition, 1275– 1284 (2023)
- [32] Bartók, A.P., Kondor, R., Csányi, G.: On representing chemical environments. Physical Review B 87(18), 184115 (2013)
- [33] Kovács, D.P., Batatia, I., Arany, E.S., Csányi, G.: Evaluation of the mace force field architecture: From medicinal chemistry to materials science. The Journal of Chemical Physics 159(4) (2023)
- [34] Mosca, M.M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal lattices. Crystal Research and Technology 55(5), 1900197 (2020)
- [35] Anosova, O., Kurlin, V.: An isometry classification of periodic point sets. In: LNCS (Proceedings of DGMM), vol. 12708, pp. 229–241 (2021)
- [36] Anosova, O., Kurlin, V.: Recognition of near-duplicate periodic patterns by continuous metrics with approximation guarantees. arXiv:2205.15298 (2022)
- [37] Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 86–91 (2023)
- [38] Azrour, M., Azdouz, M., Manoun, B., Essehli, R., Benmokhtar, S., Bih, L., El Ammari, L., Ezzahi, A., Ider, A., Hou, A.A.: Rietveld refinements and vibrational spectroscopic studies of na1-xkxpb4(po4)3 lacunar apatites ($0 \le x \le 1$). Journal

of Physics and Chemistry of Solids **72**(11), 1199–1205 (2011) https://doi.org/10. 1016/j.jpcs.2011.06.013

- [39] Cerqueira, T.F.T., Lin, S., Amsler, M., Goedecker, S., Botti, S., Marques, M.A.L.: Identification of novel cu, ag, and au ternary oxides from global structural prediction. Chemistry of Materials 27(13), 4562–4573 (2015) https://doi.org/10.1021/ acs.chemmater.5b00716
- [40] Griesemer, S.D., Ward, L., Wolverton, C.: High-throughput crystal structure solution using prototypes. Physical Review Materials 5(10), 105003 (2021)
- [41] Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 80–85 (2023)
- [42] Quarez, E., Abraham, F., Mentré, O.: Synthesis, crystal structure and characterization of new 12h hexagonal perovskite-related oxides ba6m2na2x2o17 (m= ru, nb, ta, sb; x= v, cr, mn, p, as). Journal of Solid State Chemistry 176(1), 137–150 (2003)
- [43] JULIEN POUZOL, M., JAULMES, S., LE HUI, Z.: Structure cristalline du grenat gd3-xcaxga5-xzrxo12. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre **306**(8), 531–535 (1988)
- [44] Selker, P., Klaska, R.: Struktur und hydrothermalsynthesen von beryllonittypen im system (na, k) oh-al (oh) 3-ga2o3-sio2-geo2. Zeitschrift für Kristallographie 159(1-4), 119–120 (1982)
- [45] Azrour, M., Azdouz, M., Manoun, B., Essehli, R., Benmokhtar, S., Bih, L., El Ammari, L., Ezzahi, A., Ider, A., Hou, A.A.: Rietveld refinements and vibrational spectroscopic studies of na1- xkxpb4 (po4) 3 lacunar apatites (0≤ x≤ 1). Journal of Physics and Chemistry of Solids 72(11), 1199–1205 (2011)
- [46] Crennell, S.J., Owen, J.J., Grey, C.P., Cheetham, A.K., Kaduk, J.A., Jarman, R.H.: Isomorphous substitution in non-linear optical ktiopo 4. powder diffraction and magic angle spinning nuclear magnetic resonance study of (k 1/2 na 1/2) tiopo 4 and (rb 1/2 na 1/2) tiopo 4. Journal of Materials Chemistry 1(1), 113–119 (1991)
- [47] Yakubovich, O., Anan'eva, E., Dimitrova, O.: Crystal structure of the solid solution mn 2 (p x v 1-x)(v y p 1-y) o 7. Koordinatsionnaya Khimiya 26(8), 586–591 (2000)
- [48] Schmitz-Dumont, O., Moulin, N.: Farbe und konstitution bei anorganischen feststoffen. vi. über die lichtabsorption des dreiwertigen chroms in indiumhaltigen wirtsgittern mit granatstruktur. Zeitschrift für anorganische und allgemeine Chemie **330**(5-6), 259–266 (1964)

- [49] Li, C., Zhong, J.: Highly efficient broadband near-infrared luminescence with zero-thermal-quenching in garnet y3in2ga3o12: Cr3+ phosphors. Chemistry of Materials 34(18), 8418–8426 (2022)
- [50] Pymatgen structure matcher. https://pymatgen.org/pymatgen.analysis.html# module-pymatgen.analysis.structure_matcher
- [51] Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density fingerprint of a periodic point set. In: Proceedings of SoCG, pp. 32–13216 (2021)

Appendix A Proof of invariant distance properties

Proof of Theorem 7. Let S be obtained from a periodic point set $Q \subset \mathbb{R}^n$ by perturbing every point of Q up to Euclidean distance ε , which is smaller than a minimum half-distance between any points of Q. Then S, Q have a common lattice by [51, Lemma 4.1] and hence the same number m of points in a common unit cell, and equal Point Packing Coefficients PPC(S) = PPC(Q) from Definition 3.

Since Definition 4 uses the L_{∞} metric on rows of PDAs, the Earth Mover's Distance is unaffected by subtracting the same term $\operatorname{PPC}\sqrt[3]{k}$, so $\operatorname{EMD}(\operatorname{PDD}(S;k), \operatorname{PDD}(Q;k)) = \operatorname{EMD}(\operatorname{PDA}(S;k), \operatorname{PDA}(Q;k))$. Then [9, Theorem 4.3] implies that $\operatorname{EMD}(\operatorname{PDA}(S;k), \operatorname{PDA}(Q;k)| \leq 2\varepsilon$. The minimum for all sets Q in a finite dataset D can not be larger, so $\operatorname{LND}(S;D) \leq 2\varepsilon$ by Definition 6.

Conversely, assume that S is obtained from $Q \in D$ by perturbing every atom of Q up to Euclidean distance $\varepsilon < 0.5 \text{LND}(S; D) < r(Q)$. The previously proved inequality implies that $\text{LND}(S; D) \leq 2\varepsilon < \text{LND}(S; D)$, which is a contradiction.