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Abstract

With the advent of self-driving labs promising to synthesize large numbers of new
materials, new automated tools are required for checking potential duplicates in
existing structural databases before a material can be claimed as novel. To avoid
duplication, we rigorously define the novelty metric of any periodic material as
the smallest distance to its nearest neighbor among already known materials.

Using ultra-fast structural invariants, all such nearest neighbors can be found
within seconds on a typical computer even if a given crystal is disguised by
changing a unit cell, perturbing atoms, or replacing chemical elements. This
real-time novelty check is demonstrated by finding near-duplicates of the 43 mate-
rials produced by Berkeley’s A-lab in the world’s largest collections of inorganic
structures, the Inorganic Crystal Structure Database and Materials Project.

To help future self-driving labs successfully identify novel materials, we propose
navigation maps of the materials space where any new structure can be quickly
located by its invariant descriptors similar to a geographic location on Earth.

Keywords: materials space, crystal structure, isometry invariant, continuous metric

1 Introduction: how is the materials space defined?

The chemical space of all possible molecules is often estimated at the scale of 1060 [1].
Similar numbers are quoted for potential materials, though different polymorphs such
as diamond and graphite have the same chemical composition and hence can only
be distinguished by their geometry. When materials are claimed to be novel amongst
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already known ones, we need to rigorously define what constitutes two materials being
the “same or different” [2]. The definition of a crystal structure was finalised in the peri-
odic case in [3], so we focus on ideal periodic crystals (briefly, crystals) as formalised
below. When a material is disordered, we consider its closest periodic analogue.

A crystal is usually given by a basis of vectors v1,v2,v3 in Euclidean space R3

and a motif of atoms with chemical elements and fractional coordinates in this basis.
If we forget about chemical elements, the atomic centres p1, . . . , pm can be considered
zero-sized points in the primitive unit cell U = {t1v1 + t2v2 + t3v3 | t1, t2, t3 ∈ [0, 1)}
defined by the basis v1,v2,v3. In dimension 2, the second picture of Fig. 1 highlights
the square cell U with the orthonormal basis v1,v2. Then the underlying periodic
point set of any crystal consists of infinitely many points pi + c1v1 + c2v2 + c3v3 for
i = 1, . . . ,m and integer coefficients c1, c2, c3 ∈ Z. Infinitely many different pairs of a
basis (or a primitive cell) and a motif M generate pointwise identical crystals, see a
detailed discussion of this ambiguity of the traditional definition in [3, section 2].

Fig. 1 Almost any tiny perturbation discontinuously scales up a primitive cell and makes unreliable
any comparison based on cells or motifs. This discontinuity was resolved without relying on cells [4].

Because atoms vibrate [5, chapter 1], their fractional coordinates are always
uncertain and will slightly deviate under repeated measurements even on the same
instrument. Almost any displacement of one atom breaks the symmetry and can arbi-
trarily scale up a primitive unit cell as in Fig. 1. This discontinuity of a reduced cell
[6] was experimentally reported in 1965 [7, p. 80] and remained unresolved until 2022
[4] when all periodic crystals in the Cambridge Structural Database (CSD) [8] were
distinguished within two days (now within an hour) on a modest desktop computer.
Several unexpected duplicates with identical geometries (almost to the last decimal
place in all cell parameters and atomic coordinates) but with different chemistry are
under investigation by five journals for data integrity [9, section 6].

Because crystal structures are determined in a rigid form, there is no sense in
distinguishing crystal representations related by a rigid motion (a composition of
translations and rotations in R3), which change a basis and atomic coordinates. On
the other hand, there is no sense to fix any threshold ε > 0 that would allow us to call
crystals the “same” if all their atomic centres (without chemical attributes) can be
matched up to ε-perturbations. Indeed, any periodic point sets can be connected by
sufficiently many ε-perturbations [9, Proposition 2.10], which makes the classification
based on any threshold ε > 0 trivial due to the transitivity axiom saying that if S is
equivalent to Q, and Q is equivalent to T , then S is equivalent to T [3, section 1].
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Hence a rigorous way to classify crystals under rigid motion, is to define the crystal
structure as a rigid class of periodic point sets, see [3, Definition 6]. Then any devi-
ations of atomic positions are not ignored but continuously quantified by a distance
metric between different rigid classes. This definition would remain impractical unless
we can efficiently separate rigid classes by quickly computable invariants that are
numerical properties preserved under rigid motion. The chemical composition written
as percentages of chemical elements is such an invariant but is incomplete because
many polymorphs have the same composition but can not be matched by rigid motion.

In the sequel, we will consider the sightly weaker equivalence of isometry (any
distance-preserving transformation in R3), which is a composition of rigid motion
and reflections. Because mirror images can be distinguished by a suitable sign of
orientation, so the main difficulty is to classify periodic point sets under isometry.

When comparing crystals as periodic sets of atomic centres without chemical
attributes, it might seem that all chemistry is lost. However, the fact that all (more
than 850 thousand) periodic crystals in the CSD (apart from the investigated dupli-
cates) can be distinguished by isometry invariants in section 2 implies that no
information is lost so that all chemistry under standard conditions such as temperature
and pressure is in principle reconstructable from sufficiently precise atomic geometry.

This Crystal Isometry Principle (CRISP) first appeared in 2022 [9, section 7] and
was inspired by Richard Feynman’s Fig.1-7 in [5, chapter 1], which distinguished
7 cubic crystals by their cube size in the first lecture “Atoms and motion”, see
Fig. 2 (left). More importantly, when we consider atoms only as zero-sized points, we
can study all periodic structures in a common continuous space below.

Definition 1 (space of periodic materials). The Crystal Isometry Space CRIS(R3) is
the space of isometry classes of all periodic sets of points without atomic attributes.

Fig. 2 Left: the Crystal Isometry Principle says that all chemistry of any real periodic crystal under
standard ambient conditions can be reconstructed from (the isometry class of) the periodic set of
atomic centers given with precisely enough coordinates [4]. Right: most optimization methods output
local optima without exploring the space around. De-fogging this Crystal Isometry Space CRIS(R3)
beyond known or predicted materials will enable a proper navigation across the crystal universe.

Because (the isometry classes of) any periodic set of points has a unique location
in CRIS(R3), all known materials can be considered ‘visible stars’ in this continuous
universe, while any periodic crystal discovered in the future will appear at its own
position like a ‘new star’, see Fig. 2 (right). Not every position in CRIS(R3) is realizable
by a material because inter-atomic distances cannot be arbitrary in the same way as
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not every location on Earth is habitable. However, mapping the whole space CRIS(R3)
by invariant coordinates enables a proper exploration with a geographic-style map.

If we do not restrict the motif size, the space CRIS is infinite dimensional. However,
if we consider all periodic sets with exactly m points in a motif, the resulting subspace
CRIS(R3;m) has dimension 3m+3 due to m triples x, y, z of atomic coordinates and
6 parameters of a unit cell, of which 3 are neutralised by translations along basis
vectors. Alternatively, we can define a unit cell by 3 basis vectors with 3 coordinates,
of which 6 are neutralised by 3+3 parameters of translations and rotations in R3.

In the partial case m = 1, CRIS(R3; 1) is a continuous 6-dimensional space of 3D
lattices, which was previously cut into 14 disjoint subspaces of Bravais classes [10]
but is now parametrized by complete invariants [11]. Continuous maps of the simpler
3-dimensional space CRIS(R2; 1) of 2D lattices recently appeared in [12], [13], [14].

The full space CRIS(R3) = ∪+∞
m=1CRIS(R3;m) is a union of infinitely many sub-

spaces fr m = 1, 2, 3, . . . such that any periodic set with m points in a cell is
infinitesimally close to infinitely many subspaces of sets with 2m, 3m, . . . points in a
primitive cell. Indeed, perturbations in Fig. 1 arbitrarily extend any given cell and
make the extended cell primitive by a tiny displacement of any atom and all its
translational copies. Crystals should be continuously compared only across multiple
subspaces, not within one subspace CRIS(R3;m) for a fixed number m of atoms.

Any database of periodic crystals is a finite sample from the continuous space
CRIS(R3). The first contribution is continuous maps of the world’s five largest
databases on CRIS(R3) projected to various structural invariants. The second con-
tribution is the local novelty distance based on generically complete invariants whose
utility is demonstrated by identifying closest neighbors of the 43 A-lab crystals in the
Inorganic Crystal Structure Database (ICSD) [15] and Materials Project (MP) [16].

2 Methods: invariant-based novelty distance metric

This section introduces a new metric LND (Local Novelty Distance) that satisfies
all metric axioms and continuously quantifies in real time a deviation of any newly
synthesized crystal from its nearest neighbor in an existing structural database.

2.1 Generically complete and continuous structural invariants

Definition 2 reminds us of the Pointwise Distance Distribution (PDD), which suffices
together with a lattice to reconstruct any generic periodic point set S ⊂ R3 up to
isometry by [4, Theorem 4.4]. Generic means any set apart from a singular subspace
of measure 0, e.g. almost any tiny perturbation of atoms makes every crystal generic.

The PDD is a matrix of inter-point distances and is stronger than the Pair Dis-
tribution Function (PDF) [17] in the sense that PDD can be simplified to PDF but
distinguishes homometric structures [18] that have the same PDF [4, section 3].

Definition 2 (isometry invariant PDD(S; k)). Let S ⊂ Rn be a periodic point set
with a motif M = {p1, . . . , pm}. Fix an integer k ≥ 1. For every point pi ∈ M , let
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d1(p) ≤ · · · ≤ dk(p) be the distances from p to its k nearest neighbours within the
full infinite set S not restricted to any cell. The matrix D(S; k) has m rows consisting
of the distances d1(pi), . . . , dk(pi) for i = 1, . . . ,m. If any l ≥ 1 rows are identical to
each other, we collapse them into a single row and assign the weight l/m to this row.
The resulting matrix of maximum m rows and k+1 columns including the extra (say,
0-th) column of weights is called the Pointwise Distance Distribution PDD(S; k).

In Definition 2, any point pi ∈ M can have several different neighbours at the same
distance but the k smallest distances (without any indices or types of neighbours)
are always well-defined. The matrix PDD(S; k) has ordered columns according to the
index of neighbours but unordered rows because points of a motif of S are considered
unordered. We can add chemical elements or atomic weights as extra attributes to the
rows of PDD(S; k) but the pure geometric information will suffice in practice.

We can compare PDD matrices that have same number of columns and possibly
different numbers of rows by interpreting PDD(S; k) as a distribution of unordered
rows (or points in Rk) with weights or probabilities. One metric on such weighted
distributions is the Earth Mover’s Distance (EMD), which was previously used in
[19] for chemical compositions from the ICSD. If any point is perturbed up to ε in
Euclidean distance, any inter-point distance changes up to 2ε.

This upper bound of 2ε formally follows from the triangle axiom of a distance
metric, which is essential needed for reliable clustering. If the triangle axiom fails with
any positive error, outputs of widely used clustering algorithms such as k-means and
DBSCAN may not be trustworthy [20]. The EMD is a proper metric on weighted
distributions (hence on PDD matrices) satisfying all metric axioms [21, Appendix].

If the number k of neighbours increases to infinity, the asymptotic behaviour of
distances to neighbours is described in terms of the Point Packing Coefficient below.

Definition 3 (Point Packing Coefficient PPC). Let S ⊂ R3 be a periodic point set

with m atoms in a unit cell U . The Point Packing Coefficient is PPC(S) = 3

√
vol(U)

mV3
,

where vol(U) is the volume of U , V3 =
4

3
π is the volume of the unit ball in R3.

The distances in each row of PDD(S; k) asymptotically increase as PPC(S) 3
√
k by

[9, Theorem 13]. This asymptotic behaviour motivates the simplified invariants below.

Definition 4 (invariants AMD, ADA, PDA). The Average Minimum Distance
AMDk(S) is the weighted average of the k-th column of PDD(S; k). The Average Devi-
ation from Asymptotic is ADAk(S) = AMDk(S)−PPC(S) 3

√
k for k ≥ 1. The Pointwise

Deviation from Asymptotic is the matrix PDA(S; k) obtained from PDD(S; k) by
subtracting PPC(S) 3

√
k from any distance in row i and column k for i, k ≥ 1.

The invariants AMDk and ADAk form vectors of length k, e.g. set AMD(S; k) =
(AMD1(S), . . . ,AMDk(S)) and ADA(S; k) = (ADA1(S), . . . ,ADAk(S)). These vec-
tors can be compared by many metrics. The metric L∞(u, v) = max

i=1,...,k
|ui − vi| for

any vectors u,v ∈ Rk preserves the intuition of atomic displacements in the fol-
lowing sense. If S is obtained from Q by perturbing every point up to a small ε,
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then L∞(AMD(S; k),AMD(Q; k)) ≤ 2ε by [9, Theorem 9]. Other distances such as
Euclidean can be considered but will accumulate a larger deviation depending on k.

All invariants above and metrics on them are measured in the same units as original
coordinates, i.e. in Angstroms for crystals given by Crystallographic Information Files
(CIFs). The Point Packing Coefficient PPC(S) was defined as the cube root of the
cell volume per atom (of the same radius 1Å) and can be interpreted as an average
radius of balls ‘packed’ in a unit cell. So PPC(S) is roughly inverse proportional to
the physical density but they are exactly related only when materials have the same
average atomic mass (total mass of atoms in a unit cell divided by the cell volume).

While AMDk(S) monotonically increases in k, the invariants ADAk(S) can be
positive or negative as deviations around the asymptotic PPC(S) 3

√
k. Fig. 3 reveals

geometric differences between the mainly organic databases CSD and Crystallography
Open Database (COD) [22] versus the more inorganic collections ICSD and MP.

Fig. 3 The averages of ADAk and standard deviations (1 sigma shaded) vs
3
√
k for four databases.

The first average of ADA1 ∈ [−0.25,−0.17] in the top images of Fig. 3 can be
explained by the presence of many hydrogen atoms, which have distances smaller
than PPC(S) to their first neighbor in most organic materials. Indeed, hydrogens are
usually bonded at distances less than 1.2Å, while PPC(S) is often larger than 1.2Å
because most chemical elements have van der Waals radii above 1.2Å [23].

For inorganic materials, metal atoms or ions have relatively large distances to their
first neighbors, so the average ADA1 is in [0.58, 0.62] in the bottom images of Fig. 3.
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For all types of materials in Fig. 3, the value of ADAk experimentally converges
to 0 on average meaning that there is no need to substantially increase k because the
important structural information emerges for smaller indices k of neighbors.

If we increase k, the matrix PDD(S; k) and hence the vector ADA(S; k) become
longer by including distance data to further neighbors but all initial values remain
the same. Hence we consider k not as a parameter that changes the output but as a
degree of approximation similarly to the number of decimal places on a calculator.

The convergence ADAk → 0 as k → +∞ justifies computing the distance L∞
between ADA vectors up to a reasonable k. In practice, we use k = 100 because all
ADAk for k ≥ 100 are close to 0 (the range of 1 sigma between ±0.2Å) in Fig. 3.

2.2 Novelty distance based on practically complete invariants

This subsection introduces the Local Novelty Distance LND(S;D) of a periodic crystal
S as a distance to the closest neighbor Q of S in a given dataset D.

The new distance LND is measured as a metric between the invariants PDA(S; k)
and PDA(Q; k) for k = 100, motivated as follows. First, the invariants PDD(S; 100)
distinguished all non-duplicate periodic crystals in the CSD. Second, for a generic
periodic set S (away from a measure 0 subspace), PDD(S; k) with a big enough
k and a lattice of S suffices to reconstruct S uniquely under isometry in Rn by
[4, Theorem 4.4]. Finally, distances to k-th neighbors in PDD(S; k) asymptotically
increase as PPC(S) 3

√
k. If crystals S,Q have different PPC(S) ̸= PPC(Q), the dis-

tance L∞ between corresponding rows of PDD matrices likely equals the expected
largest difference in the final k-th colimn, which ignores all neighbors with smaller
indices. Hence subtracting PPC(S) 3

√
k in Definition 4 makes any metric on PDAs more

informative than on PDDs. Definition 5 introduces a metric on PDA matrices.

Definition 5 (Earth Mover’s Distance EMD [21]). Consider any matrix PDA(S; k)
as a distribution of rows Ri(S) with weights wi(S) for i = 1, . . . ,m(S) such

that
m∑
i=1

wi = 1. The Earth Mover’s Distance EMD(PDA(S; k),PDA(Q; k)) =

min
fij

m(S)∑
i=1

m(Q)∑
j=1

fijL∞(Ri(S), Rj(Q)) is minimized for all real fij ≥ 0 (called flows)

subject to the conditions
m(S)∑
i=1

fij ≤ wj(Q),
m(S)∑
j=1

fij ≤ wi(S),
m(S)∑
i=1

m(Q)∑
j=1

fij = 1.

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S)

of the component Ri(S) ‘flows’ into all components Rj(Q) via ‘flows’ fij for j =

1, . . . ,m(Q). The second condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij from

Ri(S) for i = 1, . . . ,m(S) ‘flow’ into Rj(Q) up to the maximum weight wj(Q). The

last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to ‘flow’ all rows Ri(S) to all rows Rj(Q).
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Definition 6 (Local Novelty Distance LND(S;D)). Let D be a finite dataset of
periodic point sets. Fix an integer k ≥ 1. For any periodic point set S, the Local
Novelty Distance LND(S;D) = min

Q∈D
EMD(PDA(S; k),PDA(Q; k))vis the shortest L∞

distance from S to its nearest neighbor Q in the given dataset D.

If S is already contained in the dataset D, then LND(S;D) = 0, so S cannot be
considered novel. More practically, a newly synthesized periodic crystal S can be a
near-duplicate of some known Q. Then LND(S;D) is small as justified below.

The packing radius r(Q) is the minimum half-distance between any points of Q.

Theorem 7. If S is obtained from a crystal Q in a dataset D by perturbing every
point of Q up to ε < r(Q), then LND(S;D) ≤ 2ε. To get S from a crystal Q ∈ D with
LND(S;D) < 2r(Q), some atom of Q should be perturbed by at least 0.5LND(S;D).

Theorem 7 is proved in Appendix A. The distance LND(S;D) is called local because
Definition 6 uses the first nearest neighbor of S in D. Another novelty of S can be
characterized with respect to a global distribution of all crystals in D, which we will
explore in a forthcoming work. The local novelty is more urgently needed to tackle the
growing crisis of duplication in experimental and simulated databases, some of which
were publicly rebutted in [24], [25], and [26], [3, Tables 1-2 in section 6], respectively.

2.3 Insufficiency of past invariants and similarities of crystals

This subsection only briefly reviews the past approaches to classify crystals and quan-
tify their similarities. Some widely used similarities such as the Root Mean Square
Deviation (RMSD) [27] deserve their own detailed discussions in another forthcoming
work. The shape (isometry class) of a reduced cell with standard settings [28] were
thoroughly developed to uniquely represent any periodic crystal. The resulting con-
ventional representation can be theoretically considered a complete isometry invariant
but discontinuously changes under almost any perturbation in practice.

Indeed, perturbations in Fig. 1 apply to any crystal and can arbitrarily extend
a reduced cell to a larger cell whose size cannot be reduced. Searching for a small
perturbation (pseudo-symmetry) to make a cell smaller [29] inevitably uses thresholds
and leads to a trivial classification due to the transitivity axiom, see [3, section 1].

The COMPACK algorithm [27] outputs an RMSD quantity by comparing finite
portions of only molecular crystals. Its implementation in Mercury also uses thresh-
olds for acceptable deviations of atoms and angles. Even if these thresholds are ignored
(made large), the algorithm chooses one molecule in a unit cell and 14 (by default) clos-
est molecules around it. The resulting molecular group depends on a central molecule;
for co-crystals containing geometrically different molecules or the same molecule in
non-equivalent positions, matching these molecules by rigid motion does not match
the full crystal. Even for simple crystals based on a single molecule as is often the case
in Crystal Structure Prediction [30], the choice of 14 (or any other number of) neigh-
bours can be discontinuous when a central molecule has 14th and 15th neighbours at
the same distance. Selected clusters of molecules in two crystals require an optimal
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alignment, which is a hard problem because atomic sets can contain numerous indis-
tinguishable atoms, so the optimization must consider many potential permutations.
This problem of exponentially many permutations was recently resolved in [31] but a
choice of a single atomic environment in a crystal remains discontinuous.

Other similarities based on all atomic environments such as SOAP [32] and MACE
[33] use a Gaussian deviation and a cut-off radius for interatomic interactions to con-
vert a periodic set of discrete points to a complicated smooth function. This function
decomposes into an infinite sum of spherical harmonics whose truncation up to a
certain order becomes incomplete, which will be discussed in future work.

The PXRD similarity compares crystals through powder diffraction patterns that
are identical for homometric structures [18], some of which were distinguished even
by AMD2 in [9, appendix A]. The PXRD as implemented in Mercury also fails the
triangle inequality but runs faster than the RMSD and SOAP similarities.

In summary, the past approaches through conventional representations and
environment-based similarities separately focused on two important complementary
properties: completeness and continuity. The problem of combining these two proper-
ties was first stated in [34] for lattices and then extended in [35] to a complete invariant
isoset of any periodic point set and a continuous metric approximated with a small
error factor by an algorithm whose time polynomially depends on the motif size [36].

3 Results: novelty of materials and navigation maps

This section describes how the 43 materials reported by A-lab can be automatically
positioned relative to the ICSD and MP within the full materials space CRIS(R3).

Among the 43 materials whose CIFs are available in the supplementary materials
in [37], only 32 are pure periodic without any disorder, 10 have substitutional disorder
with one or more sites occupied by multiple atomic types, and one has positional
disorder with an atom occupying any of 4 positions with occupancy 0.5.

Closest neighbors within the ICSD and Materials Project for each A-lab crystal
were found as follows. Using binary search on ADA(S; 100) vectors with the metric
L∞, we found the nearest 100 neighbors for each A-lab crystal within each database.
These neighbors were then re-compared by Earth Mover’s Distance on the stronger
invariants PDD(S; 100). This EMD metric also outputs which atomic types and/or
occupancies were correctly matched and which were not. Since most A-lab crystals
had several geometric nearest neighbors with small distances EMD, we selected the
neighbor with the most similar composition as measured by element mover’s distance
[19], which are listed in Tables 2 and 4 below. The local novelty distance of each A-lab
crystal is not more than the Earth Mover’s Distance listed in the column EMD, 100.

The time taken in each step of the process described above is given in Table 1
below. All experiments were performed on an average desktop computer: AMD Ryzen
5 5600X (6-core), 32GB RAM, Python 3.9.
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Stage ICSD, seconds MP, seconds
Binary search on ADA(S; 100) in the full database 3.023 2.450
PDA(Q; 100) for 100 neighbors found by ADA 5.272 5.990
EMD on PDAs for 100 neighbors found by ADA 0.535 0.742
Elemental Mover’s Distance (ElMD) for 100 neighbors 9.534 9.737

Table 1 Times (seconds) to complete each stage of the process of finding nearest neighbors
in the ICSD and Materials Project for each A-lab crystal on a modest desktop computer.

3.1 Local novelty distances of the A-lab materials vs ICSD

Table 2 lists the nearest neighbors found in the ICSD for each A-lab crystal. We
used a snapshot of the ICSD in 2019, while the GNoME AI project used a snapshot
from 2021. Despite this, two A-lab crystals were found to already exist in the ICSD:
KNaP6(PbO3)8 has the closest neighbor ICSD 182501 reported in 2011 [38], and
MnAgO2 has the closest neighbor ICSD 670065 reported as a hypothetical structure
in 2015 [39]. In particular, MnAgO2 was one of three crystals that the later rebuttal
said was synthesized successfully [24]. They state that the material was first reported
in 2021 [40] (ICSD 139006), after the snapshot used to train the GNoME AI, and so
was not included in the original training data and could be considered a success. Our
findings show this crystal did in fact exist in the ICSD prior to the 2021 snapshot.

The pre-existing version of this crystal was not found by [24] using a unit cell
search because the unit cell of ICSD 670065 significantly differs from that of the A-
lab version or ICSD 139006, with the former listing its space group as A 2/m and
the latter two having space group C 2/m. This missed near-duplicate further supports
the robustness of a search based on continuous invariants independent of a unit cell,
which can find near-duplicates despite disagreement on the correct space group.

Aside from the two structures above, all other A-lab crystals were found to have
a geometric near-duplicate in the ICSD with a different composition. Many of these
near-duplicates involve the substitution of only one atom, replacing a disordered site
with a fully ordered one or adjusting the occupancy ratios of atoms at a site.

These structural analogues of A-lab’s reported materials are not surprising as the
GNoME AI [41] used atomic substitution on existing crystals to generate potential
new ones without substantially changing the atomic geometry.

The fact that pre-existing structures in the ICSD were missed by the later rebuttal
[24] suggests that a more robust method is needed for comparing structures in the aid
of materials discovery.

3.2 Local novelty distances of the A-lab materials vs MP

The Materials Project contains a substantial number of theoretical structures, many
of which are obtained by substituting atoms in existing structures with plausible alter-
natives, a strategy also employed by the GNoME AI which generated the crystals later
synthesized by Berkeley’s A-lab. Despite the substitution patterns used by GNoME
being tuned to prioritize discovery and not repeat data, 42 of the 43 A-lab crystals
were found to already exist in the Materials Project, all of which predate the March
2021 snapshot used to train the GNoME AI and hence were part of its training data.
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A-lab name ICSD ID ICSD composition EMD, 100Site mismatches
Ba2ZrSnO6* 181433 In0.5Nb0.5BaO3 0.003 Zr0.5Sn0.5 ↔ Nb0.5In0.5
Ba6Na2Ta2V2O17 97524 Ba6Na2Ru2V2O17 0.092 Ta ↔ Ru
Ba6Na2V2Sb2O17 97524 Ba6Na2Ru2V2O17 0.081 Sb ↔ Ru
Ba9Ca3La4(Fe4O15)2* 72336 Ca3La4Fe8Ba9O30 0.192 (Ca0.43La0.57)2Ba ↔

Ca0.33La0.67(Ca0.5Ba0.5)2
CaCo(PO3)4 412558 MnP2O6 0.173 CoCa ↔ Mn2
CaFe2P2O9 407045 CaVNiP2O9 0.157 Fe2 ↔ VNi
CaGd2Zr(GaO3)4* 202850 Ca0.95Zr0.95Gd2.05

Ga4.05O12

0.123 GaZrGdCa ↔
Ga0.52Zr0.48Ca0.32Gd0.68

CaMn(PO3)4 412558 MnP2O6 0.132 Ca ↔ Mn
CaNi(PO3)4 37136 NiCoP4O12 0.204 Ca ↔ Co
FeSb3Pb4O13* 65839 CrSb3Pb3.93O13 0.086 Fe0.25 ↔ Cr0.25
Hf2Sb2Pb4O13 84759 W4.48Sn11.5Pb15.8O51.9 0.086 SbHf ↔ Sn0.72W0.28
InSb3(PO4)6 166834 InSb3P6O24 0.21 SbIn ↔ In0.5Sb0.5
InSb3Pb4O13 262198 Bi2Sn2O7 0.439 SbOIn2Pb2 ↔ Sn2Bi3O
K2TiCr(PO4)3 280999 CrTiK2P3O12 0.044 TiCr ↔

Ti0.61Cr0.39Ti0.39Cr0.61
K4MgFe3(PO4)5 161484 MgFe3K4P5O20 0.075 FeMg ↔ Mg0.25Fe0.75
K4TiSn3(PO5)4 250088 Ti0.253Sn0.747KPO5 0.086 TiSn2 ↔ Ti0.26Sn0.74

Ti0.24Sn0.76
KBaGdWO6 60499 WCaBa2O6 0.009 GdK ↔ CaBa
KBaPrWO6 60499 WCaBa2O6 0.053 PrK ↔ CaBa
KMn3O6* 261406 K0.463MnO2 0.016 K0.5 ↔ K0.695
KNa2Ga3(SiO4)3 411328 SiNaGaO4 0.27 SiGaK ↔ GaSiNa
KNaP6(PbO3)8* 182501 KNaP6Pb8O24 0.005
KNaTi2(PO5)2 67539 K0.05Na0.95TiPO5 0.2 NaK ↔ Na0.95K0.05
KPr9(Si3O13)2* 153272 KSi6Pr9O26 0.16 (K0.1Pr0.9)2 ↔

PrK0.25Pr0.75
Mg3MnNi3O8 80306 MnNi3Mg3O8 0.043 MgNi ↔ Mg0.5Ni0.5
Mg3NiO4* 60496 Cu0.2Mg0.8O 0.003 Mg0.75Ni0.25 ↔ Mg0.8Cu0.2
MgCuP2O7* 69576 Co0.92Mg1.08P2O7 0.218 Mg0.5Cu0.5 ↔ Mg0.54Co0.46
MgNi(PO3)4 37136 NiCoP4O12 0.141 Mg ↔ Co
MgTi2NiO6 171583 NiMgTi2O6 0.038 MgNi ↔ Mg0.5Ni0.5
MgTi4(PO4)6 419418 MnTi4P6O24 0.133 Mg ↔ Mn
MgV4Cu3O14 69731 MgCu3V4O14 0.11 CuMg ↔ Mg0.25Cu0.75
Mn2VPO7 20296 Mn2P2O7 0.21 V ↔ P
Mn4Zn3(NiO6)2 625 MgCu2Mn3O8 0.186 MnZnNi ↔ MgCuMn
Mn7(P2O7)4 67514 Fe7P8O28 0.126 Mn ↔ Fe
MnAgO2 670065 MnAgO2 0.097
Na3Ca18Fe(PO4)14 85103 FeNa3P14Ca18O56 0.153 FeCa2Na ↔

Ca0.5Fe0.5Na0.17Ca0.83
Na7Mg7Fe5(PO4)12 200238 Na2Fe3P3O12 0.229 POMg2 ↔ Na3Fe
NaCaMgFe(SiO3)4* 172120 NaCaMgCrSi4O12 0.075 (MgFeNaCa)0.25 ↔ MgCr-

NaCa
NaMnFe(PO4)2 200238 Na2Fe3P3O12 0.242 POMn2 ↔ Na2Fe2
Sn2Sb2Pb4O13 262198 Bi2Sn2O7 0.461 SbOSnPb2 ↔ SnBi3O
Y3In2Ga3O12 185862 Y3Ga5O12 0.104 In ↔ Ga
Zn2Cr3FeO8 196119 ZnCr2O4 0.022 Fe ↔ Cr
Zn3Ni4(SbO6)2* 180711 Ti0.18Zr0.33ZnO2 0.162 Ni0.66Sb0.33 ↔

Ti0.17Zn0.5Zr0.33
Zr2Sb2Pb4O13 65054 TiSbPb1.97O6.5 0.12 SbZr ↔ Ti0.5Sb0.5

Table 2 Close neighbors of each A-lab crystal in the ICSD. The ICSD entry with the smallest
element mover’s distance [19] was selected from the list of 100 nearest neighbors by ADA100.
Disordered crystals are marked with an asterisk *.
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As the Materials Project does not model disorder, no match was found for the posi-
tionally disordered KMn3O6. However, its nearest neighbor was found in the ICSD
(with a change in occupancy), and so all 43 A-lab crystals had already been hypothe-
sized or synthesized prior to the beginning of the GNoME project. Table 3 below lists
the 8 crystals, which have already been synthesized.

A-lab name Matching database entries Source and date
Ba6Na2Ta2V2O17 mp-1214664, Pauling file sd 1003187 [42], 2003
Ba6Na2V2Sb2O17 mp-1214658, Pauling file sd 1003189 [42], 2003
CaGd2Zr(GaO3)4 mp-686296, ICSD 202850 [43], 1988
KNa2Ga3(SiO4)3 mp-1211711, Pauling file sd 1707156 [44], 1982
KNaP6(PbO3)8 ICSD 182501 [45], 2011
KNaTi2(PO5)2 mp-1211611, Pauling file sd 1414297 [46], 1991
Mn2VPO7 mp-1210613, Pauling file sd 1322766 [47], 2000
Y3In2Ga3O12 mp-1207946, Pauling file sd 1704376 [48], 1964

Table 3 The 8 reportedly new crystals synthesized by A-lab found to already
have been synthesized and uploaded to various databases.

Y3In2Ga3O12 in Table 3 was one of the three crystals agreed to have been syn-
thesized by the later rebuttal paper [24], as discussed in Section 3.1. Their earliest
reference for this crystal dates to 2022 [49], again leading to their conclusion that the
crystal was novel from the perspective of the GNoME AI trained on data from 2021.
We found that this crystal was reported in 1964 and uploaded to the Materials Project
no later than 2018, and so would have been part of GNoME’s training data.

The 10 substitutionally disordered A-lab crystals had matches in the Materials
Project where disordered sites were replaced with multiple fully ordered sites of atoms
in the same ratio; e.g. FeSb3Pb4O13 matching mp-1224890 had a site Fe0.25Sb0.75
with multiplicity 4 replaced with FeSb3. For completeness, this is noted in the site
mismatches column of Table 4, listing all nearest neighbors in the Materials Project.

One pair of note is CaGd2Zr(GaO3)4 & mp-686296, which have one atom swapped
(Ga↔ Zr). This Materials Project entry originates from ICSD 202850, listed in Table 2
as the closest neighbor in the ICSD. The ICSD entry has disorder on the sites where
atoms were swapped, whereas the A-lab and Materials Project versions have no disor-
der. We conclude that this crystal is not new, as these atoms could have been swapped
to match the A-lab crystal with a different ordering of the disordered ICSD entry.

The GNoME paper used the Pymatgen structure matcher [50] to filter out duplicate
structures, whose first three steps are quoted below:

“1. Given two structures: s1 and s2

2. Optional: Reduce to primitive cells.

3. If the numbers of sites do not match, return False.”

These steps are followed by several heuristic steps which involve finding deviations
between atoms in the reduced unit cell. If step 2 above is optionally missed, step 3
can output False (no match) for identical crystals given with different non-primitive
cells. If step 2 is enforced, step 3 will output False (no match) for any nearly identical
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crystals, whose primitive cells can arbitrarily differ due to a tiny atomic displacement
as in Fig. 1. For the above reasons, our findings show that this method of comparing
structures was insufficient for comparing structures to filter out existing duplicates
from the data, resulting in the AI silently reproducing data in the training set.

A-lab name MP ID MP composition EMD100 Site mismatches
Ba2ZrSnO6* 1228067 Ba2ZrSnO6 0.025 Zr0.5Sn0.5 ↔ ZrSn
Ba6Na2Ta2V2O17 1214664 Ba6Na2Ta2V2O17 0.029
Ba6Na2V2Sb2O17 1214658 Ba6Na2V2Sb2O17 0.021
Ba9Ca3La4(Fe4O15)2* 1228537 Ba9Ca3La4Fe8O30 0.136 Ca0.43La0.57 ↔ Ca3La4
CaCo(PO3)4 1045787 CaCoP4O12 0.090
CaFe2P2O9 1040941 CaFe2P2O9 0.114
CaGd2Zr(GaO3)4* 686296 CaGd2ZrGa4O12 0.069 Ga ↔ Zr
CaMn(PO3)4 1045779 CaMnP4O12 0.163
CaNi(PO3)4 1045813 CaNiP4O12 0.151
FeSb3Pb4O13* 1224890 FeSb3Pb4O13 0.027 Fe0.25Sb0.75 ↔ FeSb3
Hf2Sb2Pb4O13 1224490 Hf2Sb2Pb4O13 0.012
InSb3(PO4)6 1224667 InSb3P6O24 0.011
InSb3Pb4O13 1223746 InSb3Pb4O13 0.029
K2TiCr(PO4)3 1224541 K2TiCrP3O12 0.009
K4MgFe3(PO4)5 532755 K4MgFe3P5O20 0.076
K4TiSn3(PO5)4 1224290 K4TiSn3P4O20 0.014
KBaGdWO6 1523079 KBaGdWO6 0.006
KBaPrWO6 1523149 KBaPrWO6 0.012
KMn3O6* 1223545 KMn2O4 0.439 Not a match
KNa2Ga3(SiO4)3 1211711 KNa2Ga3Si3O12 0.022
KNaP6(PbO3)8* 1223429 KNaP6Pb8O24 0.174 Na0.25K0.25Pb0.5 ↔

NaKPb2
KNaTi2(PO5)2 1211611 KNaTi2P2O10 0.012
KPr9(Si3O13)2* 1223421 KPr9Si6O26 0.009 K0.1Pr0.9 ↔ KPr9
Mg3MnNi3O8 1222170 Mg3MnNi3O8 0.029
Mg3NiO4* 1099253 Mg3NiO4 0.002 Mg0.75Ni0.25 ↔ Mg3Ni
MgCuP2O7* 1041741 MgCuP2O7 0.093 Mg0.5Cu0.5 ↔ MgCu
MgNi(PO3)4 1045786 MgNiP4O12 0.018
MgTi2NiO6 1221952 MgTi2NiO6 0.009
MgTi4(PO4)6 1222070 MgTi4P6O24 0.075
MgV4Cu3O14 1222158 MgV4Cu3O14 0.060
Mn2VPO7 1210613 Mn2VPO7 0.125
Mn4Zn3(NiO6)2 1222033 Mn4Zn3Ni2O12 0.054
Mn7(P2O7)4 778008 Mn7P8O28 0.123
MnAgO2 996995 MnAgO2 0.098
Na3Ca18Fe(PO4)14 725491 Na3Ca18FeP14O56 0.031
Na7Mg7Fe5(PO4)12 1173791 Na7Mg7Fe5P12O48 0.028
NaCaMgFe(SiO3)4* 1221075 NaCaMgFeSi4O12 0.026 (MgFeNaCa)0.25 ↔

MgFeNaCa
NaMnFe(PO4)2 1173592 NaMnFeP2O8 0.032
Sn2Sb2Pb4O13 1219056 Sn2Sb2Pb4O13 0.025
Y3In2Ga3O12 1207946 Y3In2Ga3O12 0.008
Zn2Cr3FeO8 1215741 Zn2Cr3FeO8 0.014
Zn3Ni4(SbO6)2* 1216023 Zn3Ni4Sb2O12 0.092 Ni0.67Sb0.33 ↔ Ni2Sb
Zr2Sb2Pb4O13 1215826 Zr2Sb2Pb4O13 0.025

Table 4 Close neighbors of each A-lab crystal in the Materials Project. The Materials Project
entry with the smallest element mover’s distance [19] was selected from the list of 100 nearest
neighbors by ADA100. Disordered crystals are marked with an asterisk *.
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3.3 A-lab crystals on continuous heatmaps of the ICSD and MP

All figures in this section show scatter plots of the 42 CIFs from the A-lab over
heatmaps of the ICSD and MP. The only excluded CIF is the positionally disordered
crystal KMn3O6. On every map, the colour of any pixel with coordinates (x, y) indi-
cates the number of crystals whose continuous invariants coincide with (x, y) after
discretisation. To better visualise the hot spots of the maps, we excluded some outliers
in the ICSD and MP, e.g. all crystals with densities higher than 10 g/cm3 in Fig. 4.

Fig. 4 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (density, ADA1).

4 Conclusion: where to go in the materials space?

This paper introduced the materials space in Definition 1 as the Crystal Isometry Space
containing all known and not yet discovered crystals at unique locations determined
by sufficiently precise geometry of atomic centers without atomic types.

Definition 6 introduced the Local Novelty Distance (LND) based on generically
complete invariants of periodic point sets. This LND shows how far away any periodic
crystal is from its nearest neighbor in a given dataset. The ultra fast speed of LND
allows us to find nearest neighbors from the world’s largest databases within seconds on
a modest desktop computer. Future work will develop another distance characterizing
a global novelty or similarity of a crystal relative to a dataset.

Our finding that 42 of the 43 A-lab crystals existed prior to the GNoME project
and were seemingly part of its training data but were later targeted for synthesis by the
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Fig. 5 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (PPC, ADA1).

Fig. 6 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (ADA2, ADA3).
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Fig. 7 The scatter plot of A-lab crystals over the ICSD and MP in the coordinates (ADA5, ADA4).

Fig. 8 The plot of A-lab crystals over the ICSD and MP in the coordinates (ADA1, ADA20).
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Fig. 9 The plot of A-lab crystals over the ICSD and MP in the coordinates (ADA20, ADA100).

A-lab shows that both the AI’s pipeline and the later selection process for materials to
target for synthesis would have benefited from the introduction of isometry invariants
to find nearest neighbors. As theoretical structures generated by GNoME were re-
introduced into its training set, these duplicates can pollute the training data and
introduce bias, but could be filtered out by continuous invariants. It is also crucial
that the selection process for targets to synthesize by an automated laboratory avoids
pre-existing crystals to justify the discovery of truly novel materials. The next step
in exploring the materials space CRIS(R3) is to understand the structure-property
relations by visualize property values like mountainous landscapes in Fig. 2 (right).

This work was supported by the EPSRC New Horizons grant “Inverse design of
periodic crystals” (EP/X018474/1) and the Royal Society APEX fellowship “New
geometric methods for mapping the space of periodic crystals” (APX/R1/231152) of
the second author. We thank Andy Cooper FRS (the director of Materials Innovation
Factory, Liverpool, UK), Robert Palgrave and Leslie Schoop for fruitful discussions of
A-lab crystals and any reviewers for their valuable time and helpful suggestions.
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Appendix A Proof of invariant distance properties

Proof of Theorem 7. Let S be obtained from a periodic point set Q ⊂ Rn by perturb-
ing every point of Q up to Euclidean distance ε, which is smaller than a minimum
half-distance between any points of Q. Then S,Q have a common lattice by [51,
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Lemma 4.1] and hence the same number m of points in a common unit cell, and equal
Point Packing Coefficients PPC(S) = PPC(Q) from Definition 3.

Since Definition 4 uses the L∞ metric on rows of PDAs, the Earth
Mover’s Distance is unaffected by subtracting the same term PPC 3

√
k,

so EMD(PDD(S; k),PDD(Q; k)) = EMD(PDA(S; k),PDA(Q; k)). Then [9,
Theorem 4.3] implies that EMD(PDA(S; k),PDA(Q; k)| ≤ 2ε. The minimum for all
sets Q in a finite dataset D can not be larger, so LND(S;D) ≤ 2ε by Definition 6.

Conversely, assume that S is obtained from Q ∈ D by perturbing every atom of Q
up to Euclidean distance ε < 0.5LND(S;D) < r(Q). The previously proved inequality
implies that LND(S;D) ≤ 2ε < LND(S;D), which is a contradiction.
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