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Abstract

Proteins are large biomolecules that regulate all living organisms and consist of
one or several chains. The primary structure of a protein chain is a sequence of
amino acid residues whose three main atoms (alpha-carbon, nitrogen, and carbonyl
carbon) form a protein backbone. The tertiary (geometric) structure is the rigid
shape of a protein chain represented by atomic positions in a 3-dimensional space.

Because different geometric structures often have distinct functional properties,
it is important to continuously quantify differences in rigid shapes of protein back-
bones. Unfortunately, many widely used similarities of proteins fail axioms of a
distance metric and discontinuously change under tiny perturbations of atoms.

This paper develops a complete invariant that identifies any protein backbone in
space, uniquely under rigid motion. This invariant is Lipschitz bi-continuous in the
sense that it changes up to a constant multiple of any perturbation of atoms, and
vice versa. The new invariant has been used to detect thousands of (near-)duplicates
in the Protein Data Bank, whose presence inevitably skews machine learning predic-
tions. The resulting invariant space allows low-dimensional maps with analytically
defined coordinates that reveal substantial variability in the protein universe.

1 Introduction: motivations and problem statement

A protein is a large biomolecule consisting of one or several chains of amino acid residues.
The primary structure (sequence) of a protein chain is a string of residue labels (repre-
sented by one or three letters), each denoting one of (usually) 20 standard amino acids.
A sequence is easy to experimentally detect but the important functional properties such
as interactions with drug molecules depend on a 3D geometric shape (called a tertiary
structure or fold) represented by an embedding of all its atoms in R3 [1], see Fig. 1 (left).
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In 1973, Nobel laureate Anfinsen conjectured that the sequence of any protein chain
determines its 3D geometric shape [2]. Neural networks for protein folding prediction
such as AlphaFold2 [3–6] optimize millions of parameters and need re-training [7] on the
growing number of experimental structures in the Protein Data Bank (PDB) [8].

Most importantly, the widely used similarities such as TM-score and LDDT [9, p. 2728]
fail the axioms of a distance metric. Then clustering algorithms such as k-means and
DBSCAN can produce pre-determined clusters [10]. Protein backbones of the same length
(number of residues) can be optimally aligned to minimize the resulting Root Mean Square
Deviation (RMSD) between corresponding atoms. This RMSD is slow to compute for all
pairs of proteins and provides only distances without a mapping of the protein universe.

Figure 1. Left: a protein chain is a sequence of amino acid residues whose atoms
Ni, Ai, Ci form a backbone embedded in R3. Middle: each triangle
△NiAiCi defines an orthonormal basis ui,vi,wi. The coordinates of

the bonds
−−−−→
CiNi+1,

−−−−−−→
Ni+1Ai+1,

−−−−−−→
Ni+1Ai+1 in this basis form the complete

Backbone Rigid Invariant BRI. Right: All rigidly equivalent backbones
form a single rigid class. All rigid classes form the Backbone Rigid Space.

We have developed a different approach to explicitly map the space of protein back-
bones in analytically defined coordinates similar to geographic-style maps of a new planet.
The first question that we should ask about any real data such as proteins is “same or
different” [11]. Geometrically, the whole protein can be rigidly moved (translated or ro-
tated), which changes all atomic coordinates but the underlying structure remains the
same in the sense that different images under rigid motion have the same functional prop-
erties. Though proteins are flexible molecules, it is important to distinguish their rigid
shapes that can differently interact [12] with other molecules including medical drugs.

Definition 1.1 (Backbone Rigid Space BRISm). A protein backbone is a sequence of m
ordered triplets of main chain atoms (nitrogen Ni, α-carbon Ai, and carbonyl carbon Ci)
given by their geometric positions in R3. A rigid motion is a composition of translations
and rotations matching backbones in R3 (denoted by S ∼= Q). For any m ≥ 1, the classes
of all backbones of m triplets under rigid motion form the Backbone Rigid Space BRISm.

Rigid classes of backbones can be distinguished only by an invariant I defined as a
descriptor preserved under any rigid motion. Any non-invariant descriptor J always has
a false negative pair of backbones S ∼= Q with J(S) ̸= J(Q). The number of residues is
invariant, while the center of mass moves together with a backbone and is not invariant.

Backbones were studied by incomplete invariants such as moments of inertia or torsion
angles, which allow false positive pairs of non-equivalent backbones S ̸∼= Q with I(S) =
I(Q). Because all atoms in a backbone S are ordered, their distance matrix determines
S ⊂ R3 up to isometry (defined as any distance-preserving transformation), but is large in
size (quadratic, O(m2)) and fails to distinguish mirror images. Adding a sign of orientation
creates discontinuity for backbones that are almost (not exactly) mirror-symmetric.
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Problem 1.2 formalizes the practically important conditions that were not all previ-
ously proved for past descriptors of backbones, see the review of past work in section 2.

Problem 1.2 (mapping the Backbone Rigid Space BRISm by geographic-style invariant
coordinates). Design a map I : BRISm → Rk satisfying the following conditions.

(a) Completeness: any backbones S ∼= Q are rigidly equivalent if and only if I(S) =
I(Q), i.e. the invariant descriptor I has no false negatives and no false positives,

(b) Reconstruction: any protein backbone S ⊂ R3 can be reconstructed from its invari-
ant value I(S) uniquely under rigid motion.

(c) Lipschitz continuity: there is a distance d satisfying the metric axioms (1) d(a, b) =
0 if and only if a = b, (2) d(a, b) = d(b, a), (3) △ inequality d(a, b) + d(b, c) ≥ d(a, c) for
all invariant values a, b, c; and a constant λ such that, for any ε > 0, if Q is obtained
from S by perturbing every atom up to Euclidean distance ε, then d(I(S), I(Q)) ≤ λε.

(d) Atom matching: there is a constant µ such that, for any backbones S,Q with
δ = d(I(S), I(Q)), all their atoms can be matched up to a distance µδ by a rigid motion.

(e) Respecting subchains: for any subchain of residues Ri ∪ · · · ∪ Ri+j in a backbone
S, the invariant I(Ri ∪ · · · ∪Ri+j) can be obtained from I(S) in a linear time O(j).

(f) Linear time: the invariant I, the metric d, a reconstruction in (b), and a rigid
motion in (d) can be computed in time O(m) for any backbone of m residues.

The completeness in 1.2(a) means that I is the strongest possible invariant and hence
distinguishes all backbones that can not be exactly matched by rigid motion.

The reconstruction in 1.2(b) is more practical because a complete invariant I may
not allow an efficiently computable inverse map I−1 from an invariant value I(S) to a
backbone S ⊂ R3. The metric axioms for a distance d in 1.2(d) are essential because
if the triangle axiom fails with any positive error, results of clustering by k-means and
DBSCAN based on d may not be trustworthy [10].

The continuity in 1.2(c) fails for invariants based on principal directions that can dis-
continuously change (or become ill-defined) in degenerate cases of high symmetry. The
atom matching in 1.2(d) says that, after finding a rigid motion f in R3, any atom p ∈ S
(say, α-carbon Ai(S) in the i-th residue) has Euclidean distance at most µδ to the corre-
sponding atom q ∈ f(Q), also α-carbon Ai(Q) in the i-th residue of Q. Conditions 1.2(c,d)
guarantee the Lipschitz continuity of I and its inverse on the image I(BRISm) ⊂ Rk.

New condition 1.2(e) is important for identifying secondary structures that are frequent
semi-rigid subchains such as α-helices and β-strands [13]. The linear time in 1.2(f) makes
all previous conditions practically useful because even the distance matrix needs O(m2)
time and space, substantially slower than O(m) for thousands of residues.

The key contribution is the Backbone Rigid Invariant BRI : BRISm → R9m−6

that solves Problem 1.2. Conditions 1.2(d,e) are stated for the first time to the best
of our knowledge. The numerical components of BRI play the role of geographic-style
coordinates on the space BRISm of rigid classes of backbones consisting of m triplets
of atoms from m residues. Geographic-style maps of the full Backbone Rigid Space
BRIS =

⋃
m≥2

BRISm will be visualized by 2D projections on pairs of averaged invariants.
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2 Past work on similarities and invariants of proteins

In the more general context of crystal structures, a canonical description in a reduced
unit cell [14] can be achieved by the program TYPIX [15] for inorganic compounds and
ACHESYM [16] for macromolecular crystals. Such conventional settings can be considered
a complete invariant in the sense of condition (1.2a). However, a reduced cell discontin-
uously changes under almost any perturbation of atoms, which has been experimentally
known at least since 1965 [17, p. 80] and was resolved only for generic crystals [18].

The majority of past approaches to quantify protein similarity use a geometric align-
ment by finding an optimal rigid motion that makes a given structure as close as possible

to a template structure. The widely used TM-score [19] TM = max

{
1

LN

LT∑
i=1

1
1+(di/d0)2

}
∈

[0, 1] is maximized over all spatial alignments of two backbones, where di
d0

is a normalized
distance between aligned Cα atoms, LT is the length of the template structure, LN is
the length of a given structure. Since any identical proteins (with all equal x, y, z coordi-
nates) have TM-score 1, the simplest way to convert this similarity into a distance is to
set TMD = 1−TM so that TMD(S, S) = 0 for any structure S. Unfortunately, this and
many other conversions such as − log(TM) fail the triangle inequality of a metric already
for 3 atoms. Indeed, if LT = LN = 1 and di/d0 are pairwise distances 1

2
, 1
3
, 1
4
between 3

atoms, which satisfy the triangle axiom, then 1−TM takes the values 1
5
, 1
10
, 1
17
, which fail

this axiom, see 1.2(c), also for the (approximate) values 0.22, 0.11, 0.06 of − log(TM).

If the triangle axiom fails with any additive error, results of the clustering algorithms
k-means and DBSCAN can be arbitrarily pre-determined [10]. The authors of another
similarity LDDT (Local Distance Difference Test) concluded in [9, p. 2728] that “One
disadvantage of the LDDT score is that it does not fulfill the mathematical criteria to be
a metric. However, the same is true for most scores”. One metric satisfying all axioms is
the Root Mean Square Deviation (RMSD) between optimally aligned ordered atoms [20].
This RMSD is slow to compute for all-vs-all comparisons of proteins in the PDB so
many pairs with RMSD= 0 were unnoticed. If the order of atoms is not respected, the
optimal global alignment is NP-complete [21]. Any attempt to apply “random rotations
to each protein domain structure as part of the model training routine” creates many
more structures [22] that look different but should be considered rigidly equivalent.

More recently, the PDB implemented a structural superposition [23] of protein back-
bones by computing the score equal to the sum of absolute values in the upper triangle
of the distance-difference matrix (DDM) for the distance matrices between all α-carbon
atoms. The description in [23] adds that “to account for possible gaps in the DDMs,
caused by a lack of residue coordinates, these scores are multiplied by a scalar between
0-1, where 1 represents the absence of any gaps ... low scores represent chains with high
structural similarity.” This scaling by values less than 1 likely affects the triangle axiom,
which needs checking in the light of the protein folding [3, 5, 24] reviews [7, 25, 26].

More importantly, to efficiently navigate in the protein universe, in addition to dis-
tances, we need a map showing all known structures and also under-explored regions,
where new proteins can be discovered. Such a geographic-style map needs a complete
invertible and bi-continuous invariant I like the latitude and longitude on Earth.

Protein backbones are traditionally represented by torsion (dihedral) angles φi, ψi

visualized in Ramachandran plots [27]. For a general polygonal line on points S ⊂ R3,
the sequence {ϕi, ψi} is invariant under rigid motion but incomplete because a distance
between any successive points can be arbitrarily changed while preserving all angles.
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For proteins, even if all bond lengths and angles are fixed at ideal values, all torsion
angles still should be ordered according to residues to completely determine the rigid
class of a backbone. Even if we keep all torsion angles in order, three invariants per
residue cannot uniquely determine a rigid backbone having 3 atoms with 9 coordinates
per residue. AlphaFold2 [3] and more recent advances [28] used 6 parameters per residue
to define a rigid transformation on every i-th triplet (residue triangle) on the main atoms
Ni, Ai, Ci to the next (i + 1)-st residue triangle. However, the analysis in section 3 will
show that the residue triangles substantially vary across the PDB. Our paper strengthens
the past approach by defining 9 invariants per each of m residues, which gives 9m − 6
invariants in total after subtracting 6 parameters of a global rigid motion in R3.

If we consider a backbone S of 3m ordered atoms modulo isometry including reflec-
tions, the easier complete invariant known since 1935 [29] is the 3m× 3m matrix D(S) of
all pairwise distances whose entry Dij(S) is the Euclidean distance between the i-th and
j-th points of S. Any backbone S can be reconstructed from D(S) or, equivalently, from
the Gram matrix of scalar products as in [30, Theorem 1], uniquely up to isometry in
R3. The matrix D(S) satisfies almost all conditions of Problem 1.2 apart from the linear
time/size requirement, which is essential for proteins consisting of thousands of atoms.

If a protein backbone is considered a cloud of unordered points, such clouds of different
sizes can be visualized by eigenvalue invariants (or moments of inertia) characterizing the
elongation of the cloud along principal directions In 1996, probably the first map of all
4K entries in the PDB appeared in [31, Fig. 5] by using the two largest eigenvalues, see
the recent updates in [32, Fig. 2] and PDB-Explorer [33]. In 2020, Holm called for faster
visualization of the protein space [34]: “It would be nice to restore the ability to move a
lens across fold space in real-time ... this ability was based on pre-computed all-against-all
structural similarities, which is not manageable with current data volumes.”

In 1977, Kendall [35] started to study configuration spaces of ordered points modulo
rigid motion in Rn under the name of size-and-shape spaces [36]. If we consider sequences
equivalent also under uniform scaling, the smaller shape space Σm

2 of m ordered points in
R2 can be described as a complex projective space CPm−1 due to the group SO(2) being
identified with the unit circle in the complex space C1 = R2. However, there is no easy
description of the space Σm

3 of m-point sequences in R3, which has no multiplicative group
structure similar to R2 = C1. This obstacle prevented a simple solution to Problem 1.2.

3 Completeness of the backbone rigid invariant (BRI)

We start with the simpler triangular invariant that describes the rigid shape of each
residue triangle △NiAiCi on three main atoms per each of m residues: nitrogen Ni, α-
carbon Ai, and carbonyl carbon Ci, for i = 1, . . . ,m, see Fig. 1 (middle). For any points

A,B ∈ R3, let |
−→
AB| be the Euclidean length of the vector

−→
AB from A to B. We denote

vectors by u ∈ R3, their scalar and vector products by u · v and u× v, respectively.

Definition 3.1 (triangular invariant TRIN). Let a protein backbone S ⊂ R3 have m or-
dered triplets of atoms Ni, Ai, and Ci for i = 1, . . . ,m. In the basis obtained by Gaussian

orthogonalization of
−−→
AiNi,

−−→
AiCi, the vector

−−→
AiNi has the coordinates x(ANi) = |

−−→
AiNi| and

0, while
−−→
AiCi has x(ACi) =

−−→
AiCi ·

−−→
AiNi

|
−−→
AiNi|

and y(ACi) =
∣∣∣−−→AiCi−x(ACi)

−−→
AiNi

|
−−→
AiNi|

∣∣∣. The trian-

gular invariant TRIN(S) is them×3 matrix whose i-th row consists of x(ANi), x(ACi), y(ACi).
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The i-th row of TRIN(S) uniquely determines the shape of △NiAiCi. Many past
approaches including AlphaFold2 [3] assumed that all these residue triangles are rigidly
equivalent. To test this assumption on the PDB, we filter out unsuitable chains below.

Protocol 3.2 (selecting a subset of 707K+ chains in the PDB). A chain from any PDB
entry is filtered out by these steps: (1) 4513 non-proteins (the entity is not ‘protein’); (2)
178153 disordered chains (atom occupancy less than 1); (3) 201648 chains with residues
having non-consecutive indices; (4) 9941 incomplete chains missing one of the main atoms
Ni, Ai, Ci; (5) 4364 chains with non-standard amino acids.

On May 4, 2024, the PDB had 213,191 entries with 1,091,420 chains, Protocol 3.2
produced 104, 688 ≈ 49% entries including 707410 ≈ 65% chains within 4 hours 48 min
11 sec. All experiments were run on CPU Core i7-11700 @2.50GHz RAM 32Gb.

Example 3.3 (variability of residue triangles). Fig. 2 (row 1) shows the heat maps (in
the logarithmic scale) of the invariants x(ANi), x(ACi), y(ACi) across all (about 110 mil-
lion) residues in the 707K+ cleaned backbones obtained from the PDB by Protocol 3.2.
Though standard deviations of these invariants are about 0.01Å, the maximum deviations
of x(ANi), x(ACi), y(ACi) are about 1.2, 1.7, 2.7Å, respectively.

Table 1 below shows the TRIN and BRI (see Definition 3.4) invariants for the first
3 residues of two hemoglobin chains A in proteins 2hhb and 1hho (later referenced in
Example 5.2). The overall TRIN and BRI average values (mean) are in the last rows.

Res x(AN) x(CN) y(CN) x(N) y(N) z(N) x(A) y(A) z(A) x(C) y(C) z(C)
V 1.45 -0.54 1.44 1.45 0 0 0 0 0 -0.54 1.44 0
L 1.47 -0.50 1.47 -0.91 0.25 -0.90 -0.64 1.32 0.02 -1.10 0.01 1.10
S 1.47 -0.48 1.45 -0.77 0.36 -0.98 -0.66 1.31 -0.05 -1.11 0.02 1.06
mean 1.47 -0.55 1.43 0.52 0.84 0.46 -0.48 1.38 0.05 0.01 0.65 -1.01

Res x(AN) x(CN) y(CN) x(N) y(N) z(N) x(A) y(A) z(A) x(C) y(C) z(C)
V 1.48 -0.51 1.46 1.48 0.00 0.00 0.00 0.00 0.00 -0.51 1.46 0.00
L 1.49 -0.55 1.42 -0.14 0.66 1.16 -0.69 1.31 0.19 -1.51 -0.16 -0.03
S 1.44 -0.41 1.44 -0.63 0.27 -1.10 -0.36 1.36 -0.30 -1.43 0.14 0.40
mean 1.47 -0.53 1.43 0.56 0.81 0.44 -0.43 1.38 0.06 0.04 0.65 -1.02

Table 1. The TRIN and BRI invariants for the first 3 residues of 2hhb (top) and
1hho (bottom) along with their mean values for all 141 residues (as per
Definition 5.1). Some values differ significantly between the two chains.

To guarantee new condition 1.2(e) respecting subchains, Definition 3.4 will represent
atoms Ni+1, Ai+1, Ci+1 in a basis of the previous i-th residue. The first residue needs only
three invariants from Definition 3.1 to determine the rigid shape of △N1A1C1 in R3.

Due to cleaning in Protocol 3.2, all consecutive atoms along any backbone have dis-
tances d ≥ 0.01Å and all angles in any residue triangle △NiAiCi are at least 3◦, which
makes all residue bases well-defined in Definition 3.4 below.
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Figure 2. Heatmaps of the invariants TRIN and BRI across all residues in the
707K+ chains obtained by Protocol 3.2. The color indicates the num-
ber of residues whose pair of specified invariants is discretized to each
pixel. Row 2: pairs of invariants x(Ai), y(Ai), z(Ai) of the bonds NiAi

from each nitrogen Ni to the α-carbon Ai in the same residue, see Def-
inition 3.4. Row 3: pairs of invariants x(Ci), y(Ci), z(Ci) of the bonds
AiCi from each α-carbon to the carbonyl carbon Ci in the same residue.
Row 4: pairs of invariants x(Ni), y(Ni), z(Ni) of the bonds CiNi+1.
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Definition 3.4 (backbone rigid invariant BRI(S) of a protein backbone S). In the no-

tations of Definition 3.1, define the orthonormal basis vectors ui =

−−→
AiNi

|
−−→
AiNi|

, vi =
hi

|hi|
for

hi =
−−→
AiCi − bi

−−→
AiNi, bi =

−−→
AiCi ·

−−→
AiNi

|
−−→
AiNi|2

, and wi = ui × vi. The backbone rigid invariant

BRI(S) is the m×9 matrix whose i-th row for i = 2, . . . ,m contains the coefficients x, y, z

of the vectors
−−−−→
Ci−1Ni,

−−→
NiAi,

−−→
AiCi in the basis ui−1,vi−1,wi−1. So the nine columns of

BRI(S) contain the coordinates x(Ni), y(Ni), z(Ni) of the vector
−−−−→
Ci−1Ni with the head Ni,

followed by the six coordinates x(Ai), . . . , z(Ci). For i = 1, the first row of BRI(S) has
only the three non-zero coordinates x(N1) = x(AN1), x(C1) = x(AC1), y(C1) = y(AC1)
from the first row of the triangular invariant TRIN(S) in Definition 3.1.

For a backbone of m residues, the first row of the m× 9 matrix BRI(S) contains only
three non-zero coordinates. Hence the matrix BRI(S) can be considered a vector of length
9(m−1)+3 = 9m−6. The simplest metric on backbone rigid invariants as vectors in R9m−6

is L∞ equal to the maximum absolute difference between all corresponding coordinates.
A small value δ of L∞(BRI(S),BRI(Q)) guarantees by Theorem 4.8 that backbones S,Q
are closely matched by rigid motion. Another metric such as Euclidean distance or its
normalization by the chain length has no such guarantees and can be small even for a few
outliers that can affect the rigid shape and hence functional properties of a protein.

Theorem 3.5 proves conditions 1.2(a,b,c,e,f) in Problem 1.2 for the invariant BRI(S).

Theorem 3.5 (completeness, reconstruction, and subchains). (a) The m × 9 matrix
BRI(S) in Definition 3.4 is a complete invariant under rigid motion, so any backbones
S,Q ⊂ R3 of m residues are related by rigid motion if and only if BRI(S) = BRI(Q).

(b) For any backbone S of m residues, BRI(S), the metric L∞ between invariants, and a
reconstruction of S ⊂ R3 from BRI(S) can be computed in time O(m).

(c) Let Q be a subchain of j consecutive residues in a backbone S ⊂ R3. If Q includes
the first residue of S, then BRI(Q) consists of the first j rows of BRI(S). If Q starts
from the i-th residue of S for i > 1, the rows 2, . . . , j of BRI(Q) coincide with the rows
i+ 1, . . . , i+ j − 1 of BRI(S), and the 1st row of BRI(Q) are computed from the i-th row
of BRI(S) in a constant time. Hence BRI(Q) is computed from BRI(S) in time O(j).

Proof of Theorem 3.5. (a) The formulae of the basis vectors in Definition 3.4 guarantee
that all vectors have unit length |ui| = |vi| = |wi| = 1 and are orthogonal to each other
due to ui·vi = vi·wi = wi·ui = 0. Any rigid motion f acting on a given backbone S ⊂ R3

is a linear map acting on every orthonormal basis ui,vi,wi. Hence the image under f
of any vector p = xui + yvi + zwi has the same coordinates in the rigidly transformed
basis: f(p) = xf(ui) + yf(vi) + zf(wi).

(b) For any residue of a fixed index i, Definition 3.4 needs only a constant time O(1) to

compute the basis vectors and coordinates of
−−−−→
Ci−1Ni in the basis of the previous residue.

The total time for computing the m × 9 matrix BRI(S) is O(m). The metric L∞ has a
linear time in the length of vectors.

The completeness will follow by showing that any backbone S ⊂ R3 can be efficiently
reconstructed from BRI(S), uniquely after fixing the first residue whose shape is deter-
mined by the three non-zero values in the first row of BRI(S). In the first residue, the

α-carbon A1 can be moved to the origin 0 ∈ R3 by translation. Using x(N1) = |
−−−→
A1N1|,
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the N -terminal atom N1 can be fixed in the positive x-axis by an orthogonal map from
SO(3). A suitable rotation around the x-axis can move C1 to the upper xy-plane. All
these transformations preserve the lengths and scalar products. The final position of C1

is uniquely determined by its coordinates x(C1) and y(C1) written in Definition 3.4.

After fixing the first three atoms N1, A1, C1, it remains to prove that any other atom
of S is uniquely determined by its x, y, z coordinates in BRI(S). Indeed, the position of

the next atom N2 is obtained from C1 by adding the vector
−−−→
C1N2, whose coordinates are

the first three elements in the 2nd row of BRI(S). Then A2 is obtained from N1 by adding
−−−→
N2A2, whose coordinates are the second three elements in the 2nd row of BRI(S). Then

C2 is obtained from A2 by adding
−−−→
A2C2 and so on.

(c) Since the complete invariant BRI(S) of a backbone S is locally defined by determining
any i-th residue triangle in the basis of the previous (i − 1)-st triangle, all rows BRI(Q)
of any subchain Q in S coincide with the corresponding rows of S.

The only exception is the first row if Q starts from the i-th residue of S for i > 1. In
this case, the 3 non-zero invariants in the first row of Q can be obtained from the i-th
row of t TRIN(S) whose values are expressed in terms of the vectors ⃗NiAi and ⃗AiCi in
Definition 3.1. This computation needs only a constant time independent of j because
the coordinates of the vectors ⃗AiNi and ⃗AiCi are given in the i-th row of BRI(S).

Corollary 3.6 (completeness under isometry). Any mirror image S̄ of a backbone S ⊂ R3

has the invariant BRI(S) := BRI(S̄) obtained by reversing the signs in all z-columns of
BRI(S). The unordered pair of BRI(S) and BRI(S) is complete under isometry.

Proof of Corollary 3.6. To prove that BRI(S) := BRI(S̄) is obtained from BRI(S) by
reversing the signs in all z-columns of BRI(S), consider the main atoms Ni, Ai, Ci in the
i-th residue of S for any i = 2, . . . ,m. The mirror image S̄ has the corresponding atoms
N̄i, Āi, C̄i. There is a rigid motion f in R3 that matches these atoms so that Ni = f(N̄i),
Ai = f(Āi), Ci = f(C̄i), and f(S̄) is obtained from S by the reflection g in the plane of the
residue triangle △NiAiCi. This mirror reflection g preserves the basis vectors ui,vi,wi

from Definition 3.4 of the i-th residue of the backbone S.

In the orthonormal basis of ui, vi, wi = ui× vi, the coordinates of the vector
−−−−→
CiNi+1 =

x(Ni+1)ui+y(Ni+1)vi+z(Ni+1)wi determine the coordinates of the mirror image f(
−−−−−→
C̄iN̄i+1) =

x(Ni+1)ui+y(Ni+1)vi−z(Ni+1)wi, where only the sign of the coefficient of wi is reversed
as required. Since the index i = 2, . . . ,m was arbitrarily chosen, it remains to notice
that the first residue triangles △N1A1C1 and △N̄1Ā1C̄1 can be matched by rigid motion,
so all 3 non-zero invariants in the first rows of BRI(S) and BRI(S̄) coincide, while all
z-coordinates are zeros. Finally, the unordered pair of BRI(S) and BRI(S) is invariant
under any rigid motion by Theorem 3.5(a) and under reflection, which swaps the invari-
ants in this pair. By Theorem 3.5(b), any of the invariant BRI(S) and BRI(S) suffices to
reconstruct S or S̄ up to rigid motion, hence S up to isometry in R3.

4 Lipschitz bi-continuity of the invariant BRI

Theorem 4.1 will prove the Lipschitz continuity of BRI in condition 1.2(c).

Let lN,A and LN,A denote the minimum and maximum bond length between any α-
carbon Ai and nitrogen Ni across all real protein backbones, respectively. The maximum
bond lengths LA,C , LC,N are similarly defined for other types of bonds in a backbone.
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Theorem 4.1 (Lipschitz continuity of BRI). For any ε > 0, let Q be obtained from a
backbone S ⊂ R3 by perturbing every atom of S up to Euclidean distance ε. Let h be the
minimum height in the triangle △NiAiCi at the atom Ci for all residues in the backbones

S,Q. Set L = max{LC,N , LN,A, LA,C}, K =
1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
, and λ = 2(1 + 2LK).

Then L∞(BRI(S),BRI(Q)) ≤ λε.

The proof of Theorem 4.1 needs Lemmas 4.2, 4.3, 4.4, 4.5, and Proposition 4.6.

Lemma 4.2 (length difference). Any vectors u,v ∈ Rn satisfy | |u| − |v| | ≤ |u− v|.

Proof. The triangle inequality for the Euclidean distance implies that |u| ≤ |u−v|+ |v|,
so |u| − |v| ≤ |u− v|. Swapping the vectors, we get |v| − |u| ≤ |u− v|. Combining the
inequalities ±(|u|− |v|) ≤ |u−v|, we conclude that | |u|− |v| | ≤ |u−v| as required.

Lemma 4.3 (perturbation of a vector). Let A′, B′ be any ε-perturbations of points A,B ∈
Rn, respectively, i.e. |A− A′| ≤ ε, |B −B′| ≤ ε. Then |

−−→
A′B′ −

−→
AB| ≤ 2ε.

Proof. Apply the triangle inequality: |
−−→
A′B′−

−→
AB| = |

−−→
A′A+

−−→
BB′| ≤ |

−−→
A′A|+|

−−→
BB′| ≤ 2ε.

Lemma 4.4 (perturbation of a normalized vector). Let u be a δ-perturbation of a vector

v ∈ Rn, i.e. |u − v| ≤ δ. Then

∣∣∣∣ u|u| − v

|v|

∣∣∣∣ ≤ 2δ

l
, where l = max{|u|, |v|}. Hence if

u =
−−→
AN and u′ =

−−→
A′N ′ are vectors between atoms Ai, Ni and their ε-perturbations, then∣∣∣∣ u|u| − v

|v|

∣∣∣∣ ≤ 4ε

lN,A

, where lN,A is the minimum bond length between Ni, Ai.

Proof. Assume that max{|u|, |v|} = |v|, which we denote by l. Then

∣∣∣∣ u|u| − v

|v|

∣∣∣∣ =
=

∣∣∣∣ |v|u− |u|v
|u| · |v|

∣∣∣∣ = | (|v| − |u|)u+ |u|(u− v) |
|u| · |v|

≤ | |u| − |v| | · |u|+ |u| · |u− v|
|u| · |v|

=

=
| |u| − |v| |+ |u− v|

|v|
≤ 2|u− v|

|v|
≤ 2δ

|v|
=

2δ

l
,

where we used the triangle inequality, Lemma 4.2 and the given bound |u− v| ≤ δ. The
second inequality follows for δ = 2ε from Lemma 4.3 and lN,C ≤ max{|u|, |v|}.

Lemma 4.5 (product perturbations). For any u,u′,v,v′ ∈ Rn, if |v′| = |v| = 1, then

(a) |(u′ · v′)− (u · v)| ≤ |u′ − u|+ |u| · |v′ − v|,
(b) |(u′ × v′)− (u× v)| ≤ |u′ − u|+ |u| · |v′ − v|,
(c) |(u′ · v′)v′ − (u · v)v| ≤ |u′ − u|+ 2|u| · |v′ − v|.

Proof. (a) Any scalar and vector product has the upper bound |u| · |v|. Then

|(u′ · v′)− (u · v)| = |(u′ − u) · v′ + u · (v′ − v)| ≤ |(u′ − u) · v′|+ |u · (v′ − v)| ≤

≤ |u′ −u| · |v′|+ |u| · |v′ − v| = |u′ −u|+ |u| · |v′ − v| due to |v′| = 1, which proves (a).

(b) is proved as (a) after replacing the scalar product with the vector product.

(c) follows by using |v| = 1 and part (a):

|(u′·v′)v′−(u·v)v| = |(u′·v′−u·v)v′+(u·v)(v′−v)| ≤ |u′·v′−u·v|·|v′|+|u·v|·|v′−v| ≤

≤ |u′ · v′ − u · v|+ |u| · |v| · |v′ − v| ≤ |u′ − u|+ 2|u| · |v′ − v|.
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Proposition 4.6 (perturbations of a basis). In the conditions of Theorem 4.1, if any
atom is perturbed up to ε, the basis vectors from Definition 3.4 are perturbed as follows:

(a) |u′
i − ui| ≤ 4ε

lN,A

, where lN,A is the minimum bond length between Ni, Ai for all

residues;

(b) |v′
i − vi| ≤

8ε

h
(1 + 2

LA,C

lN,A

), where LA,C is the maximum bond length between atoms

Ai and Ci, while h is the minimum height in △NiAiCi at Ci for all residues;

(c) |w′
i −wi| ≤ 4εK, where K =

1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
for all i = 1, . . . ,m.

Proof. (a) In Definition 3.4 the vector ui =

−−→
AiNi

|
−−→
AiNi|

by Lemma 4.4 satisfies |u′
i−ui| ≤

4ε

lN,A

.

(b) The second vector is vi =
hi

|hi|
for hi =

−−→
AiCi−bi

−−→
AiNi, bi =

−−→
AiCi ·

−−→
AiNi

|
−−→
AiNi|2

. Set pi =
−−→
AiCi

and qi =

−−→
AiNi

|
−−→
AiNi|

, so |qi| = |q′
i| = 1, where any dash denotes a perturbation of a point or

a vector. Also, |pi| = |
−−→
AiCi| has the upper bound LA,C . Lemma 4.5(c) implies that

|b′i
−−−→
A′

iN
′
i − bi

−−→
AiNi| = |(p′

i · q′
i)q

′
i − (pi · qi)qi| ≤ |p′ − p|+ 2|p| · |q′ − q| ≤ 2ε+ 2LA,C

4ε

lN,A

,

where we used |p| ≤ LA,C and |q′ − q| ≤ 4ε

lN,A

by Lemma 4.4. Then

|h′
i − hi| = |p′

i − b′i
−−−→
A′

iN
′
i − (pi − bi

−−→
AiNi)| ≤ |p′

i − pi|+ |b′i
−−−→
A′

iN
′
i − bi

−−→
AiNi| ≤

≤ 2ε + 2ε + ε
LA,C

lN,A

= 4ε(1 + 2
LA,C

lN,A

). The vectors hi, pi, and bi
−−→
AiNi = (pi · qi)qi form a

right-angled triangle with the hypotenuse |pi|. The length |hi| = |
−−→
AiCi| sin∠NiAiCi is the

height in △NiAiCi at the atom Ci. Using the given minimum height h ≤ |hi|, Lemma 4.4

for δ = 4ε(1 + 2
LA,C

lN,A

) implies that |v′
i − vi| =

∣∣∣∣ h′
i

|h′
i|
− hi

|hi|

∣∣∣∣ ≤ 2δ

h
≤ 8ε

h
(1 + 2

LA,C

lN,A

).

(c) The third basis vector wi = ui × vi has a perturbation estimated by Lemma 4.5(b):

|w′
i−wi| = |(u′×v′)− (u×v)| ≤ |u′−u|+ |u| · |v′−v| ≤ 4ε

lN,A

+
8ε

h

(
1+2

LA,C

lN,A

)
= 4εK,

where K =
1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
as required.

Proof of Theorem 4.1. In the backbone Q, let N ′
i , A

′
i, C

′
i denote ε-perturbations of atoms

N,Ai, Ci from the backbone S for i = 1, . . . ,m. We prove that any coordinate of BRI(S)
changes by at most λε for the given Lipschitz constant λ. The first coordinate x(N1)

changes up at most 2ε because |x(N ′
1)−x(N1)| = | |

−−−→
A′

1N
′
1| − |

−−−→
A1N1| | ≤ 2ε by Lemma 4.2.

For the coordinate x(C1) =

−−−→
A1C1 ·

−−−→
A1N1

|
−−−→
A1N1|

, set u =
−−−→
A1C1 and v =

−−−→
A1N1

|
−−−→
A1N1|

, so |v| = 1.

We write the perturbed versions of all vectors with a dash.
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Then |x(C ′
1) − x(C1)| = |u′ · v′ − u · v| ≤ |u′ − u| + |u| · |v′ − v| by Lemma 4.5(a).

Lemma 4.3 implies that |u′ − u| ≤ 2ε. Lemma 4.4 for u =
−−−→
A′

1N
′
1 and v =

−−−→
A1N1 implies

that |v′ − v| ≤ 4ε

lN,A

, where lN,A is the minimum length of the bond between an α-carbon

Ai and Ni across all backbones. Also, the Euclidean length |u| = |
−−−→
A1C1| has the upper

bound LA,C equal to the maximum length of the bond between Ai and Ci across all

backbones. Then |x(C ′
1)− x(C1)| ≤ 2ε(1 + 2

LA,C

lN,A

). In the notations above, the last non-

zero coordinate in the first row of BRI(A) is y(C1) = |
−−−→
A1C1−x(C1)

−−−→
A1N1

|
−−−→
A1N1|

| = |u−x(C1)v|.

We estimate the perturbation first by Lemma 4.2:

|y(C ′
1)− y(C1)| = | |u′ − x(C ′

1)v
′| − |u− x(C1)v| | ≤ |u′ − x(C ′

1)v
′ − (u− x(C1)v)| ≤

≤ |u′ − u|+ |x(C ′
1)v

′ − x(C1)v| ≤ 2ε+ |(x(C ′
1)− x(C1))v

′ + x(C1)(v
′ − v)| ≤

2ε+ |x(C ′
1)−x(C1)|+ |x(C1)| · |v′−v| ≤ 2ε+2ε(1+2

LA,C

lN,A

)+ |
−−−→
A1C1|

4ε

lN,A

≤ 4ε(1+2
LA,C

lN,A

),

where we substituted the bounds |x(C ′
1)− x(C1)| ≤ 2ε(1 + 2

LA,C

lN,A

) and |v′ − v| ≤ 4ε

lN,A

.

In any i-th row for i = 2, . . . ,m, we estimate perturbations by Proposition 4.6(a):

|x(N ′
i)− x(Ni)| = |

−−−−→
C ′

i−1N
′
i ·u′

i −
−−−−→
Ci−1Ni ·ui| ≤ |

−−−−→
C ′

i−1N
′
i −

−−−−→
Ci−1Ni|+ |

−−−−→
Ci−1Ni| · |u′

i −ui| ≤

≤ 2ε+ LC,N
4ε

lN,A

= 2ε(1 + 2
LC,N

lN,A

), due to the upper bound |
−−−−→
Ci−1Ni| ≤ LC,N .

For the other coordinates y, z, similarly use Proposition 4.6(b,c), respectively, as follows:

|y(N ′
i)− y(Ni)| = |

−−−−→
C ′

i−1N
′
i · v′

i −
−−−−→
Ci−1Ni · vi| ≤ |

−−−−→
C ′

i−1N
′
i −

−−−−→
Ci−1Ni|+ |

−−−−→
Ci−1Ni| · |v′

i − vi| ≤

≤ 2ε+ LC,N · 8ε
h
(1 + 2

LA,C

lN,A

) = 2ε(1 + 4
LC,N

h
(1 + 2

LA,C

lN,A

).

|z(N ′
i)− z(Ni)| = |

−−−−→
C ′

i−1N
′
i ·w′

i−
−−−−→
Ci−1Ni ·wi| ≤ |

−−−−→
C ′

i−1N
′
i −

−−−−→
Ci−1Ni|+ |

−−−−→
Ci−1Ni| · |w′

i−wi| ≤

≤ 2ε+ LC,N · 4εK = 2ε(1 + 2LC,NK), where K =
1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
.

For the atoms Ai, Ci, we get similar upper bounds by replacing the factor LC,N with
LN,A, LA,C , respectively. Taking into account all upper bounds above, the overall upper
bound for the L∞ metric on invariants is L∞(BRI(S),BRI(Q)) ≤ λε, where λ = 2(1 +

2LK) for L = max{LC,N , LN,A, LA,C} and K =
1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
as required.

Example 4.7 (continuity in practice). Consider the backbone S of the chain A (141
residues) from the standard hemoglobin 2hhb in the PDB. We perturb S to Q by adding
to each coordinate x, y, z of all atoms in S some uniform noise up to various thresholds
ε = 0.01, 0.02, . . . , 0.1Å. Fig. 3 (top left) shows how the distance L∞(BRI(S),BRI(Q))
averaged over 20 perturbations depends on ε As expected by Theorem 4.1, the metric L∞
is perturbed linearly up to λε, where λ ≈ 4 in this experiment.
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Because the metric L∞ between m × 9 matrices can be computed in O(m) time,
Theorem 4.1 also completes condition (1.2f) in Problem 1.2. Theorem 4.8 will prove the
atom matching condition in 1.2(d).

Theorem 4.8 (inverse continuity of BRI). For any δ > 0 and backbones S,Q ⊂ R3

with L∞(BRI(S),BRI(Q)) < δ, there is a rigid motion f of R3 such that any atom

of S is µδ-close to the corresponding atom of f(Q) for µ =
√
3
(8LK)m−1 − 1

8LK − 1
. Let

B̂RI(S) be BRI(S) after multiplying the i-th row by
(8LK)i−1 − 1

8LK − 1
for i = 2, . . . ,m. Then

L∞(B̂RI(S), B̂RI(Q)) < δ guarantees a rigid motion f of R3 such that any atom of S is√
3δ-close to the corresponding atom of f(Q).

Proof of Theorem 4.8. Choose the origin of R3 at the first alpha-carbon atom A1 of the

backbone S, the positive x-axis through the vector
−−−→
A1N1, and the y-axis so that the

triangle N1A1C1 belongs to the upper half of the xy-plane. Shift another backbone Q so
that its first alpha-carbon atom A′

1 coincides with the origin A1. Rotate the image of Q
so that its first nitrogen atom N1 is in the x-axis through the atoms A1, N1 of S and the
next carbon C ′

1 of Q is in the upper xy-plane.

For the resulting motion f , we will prove that the atoms of S are µδ-close to the
corresponding atoms of the image of Q, which we still denote by N ′

i , A
′
i, C

′
i for simplicity.

Because the atom N ′
1 is in the x-axis through

−−−→
A1N1, the first basis vectors of length 1

coincide (u′
1 = u1) and hence also uniquely define the other basis vectors (v′

1 = v1,
w′

1 = w1). Then |x(N ′
1) − x(N1)| ≤ δ implies that the atom N ′

1 is δ-close to N1 in the
x-axis. The atoms C1, C

′
1 are δ

√
2-close due to

|C ′
1 − C1| =

√
|x(C ′

1)− x(C1)|2 + |y(C ′
1)− y(C1)|2 ≤

√
δ2 + δ2 = δ

√
2.

Because the first bases coincide, we estimate the deviations of atoms in the second
residue:

|N ′
2 −N2| = |x(N ′

2)u1 + y(N ′
2)v1 + z(N ′

2)w1 − x(N2)u1 − y(N2)v1 − z(N2)w1| =

=
√

|x(N ′
2)− x(N2)|2 + |y(N ′

2)− y(N2)|2 + |z(N ′
2)− z(N2)|2 ≤

√
δ2 + δ2 + δ2 = δ

√
3.

Similarly, we get the upper bound ε = δ
√
3 for the deviations |A′

2 − A2| and |C ′
2 − C2|.

We will prove the upper bound on deviations of atoms by induction on m ≥ 2.

max{|N ′
m −Nm|, |A′

m − Am|, |C ′
m − Cm|} ≤

√
3(1 + 8LK + · · ·+ 8(LK)m−2)δ,

where L = max{LC,N , LN,A, LA,C}, K =
1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
.

The base m = 2 was completed above. The inductive assumption says that the upper
bound ε =

√
3(1+8LK+ · · ·+(8LK)i−2)δ holds for a single value of i ≥ 2. The inductive

step is for i+ 1. Proposition 4.6 estimates deviations of vectors in the second basis:

|u′
2 − u2| ≤

4ε

lN,A

, |v′
2 − v2| ≤

8ε

h

(
1 + 2

LA,C

lN,A

)
, |w′

2 −w2| ≤ 4εK.

For nitrogens, split the deviations in the (i+1)-st residue into deviations proportional to
differences in coordinates and deviations proportional to differences in basis vectors:

|N ′
i+1−Ni+1| = |x(N ′

i+1)u
′
i+y(N

′
i+1)v

′
i+z(N

′
i+1)w

′
i−x(Ni+1)ui−y(Ni+1)vi−z(Ni+1)wi| =
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= |(x(N ′
i+1)u

′
i − x(Ni+1)ui) + (y(N ′

i+1)v
′
i − y(Ni+1)vi) + (z(N ′

i+1)w
′
i − z(Ni+1)wi)| =

=
∣∣∣(x(N ′

i+1)− x(Ni+1)
)
u′

i + x(Ni+1)(u
′
i − ui) +

(
y(N ′

i+1)− y(Ni+1)
)
v′
i+

+y(Ni+1)(v
′
i − vi) +

(
z(N ′

i+1)− z(Ni+1)
)
w′

i + z(Ni+1)(w
′
i −wi)

∣∣∣ ≤
≤

∣∣∣(x(N ′
i+1)− x(Ni+1)

)
u′

i +
(
y(N ′

i+1)− y(Ni+1)
)
v′
i +

(
z(N ′

i+1)− z(Ni+1)
)
w′

i

∣∣∣+∣∣∣x(Ni+1)(u
′
i − ui)

∣∣∣+ ∣∣∣y(Ni+1)(v
′
i − vi)

∣∣∣+ ∣∣∣z(Ni+1)(w
′
i −wi)

∣∣∣.
In the last expression, the first row contains the Euclidean length of a vector written in
the orthonormal basis u′

i,v
′
i,w

′
i. Since the coordinates of this vector have absolute values

at most δ, this length has the upper bound δ
√
3. In the second row of the matrix BRI, we

estimate each term by replacing absolute values of coordinates with the maximum bond
lengths and by using |x(Ni+1)| ≤ LC,N and Proposition 4.6 as follows:

|x(Ni+1)| · |u′
i − ui| ≤ LC,N

4ε

lN,A

, |y(Ni+1)| · |v′
i − vi| ≤ LC,N

8ε

h

(
1 + 2

LA,C

lN,A

)
,

|z(Ni+1)| · |w′
i −wi| ≤ LC,N · 4εK, where K =

1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
Taking the sum of the above estimates, the final deviation of nitrogens is

|N ′
i+1 −Ni+1| ≤

√
3δ + 4εLC,N

( 1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

)
+

1

lN,A

+
2

h

(
1 + 2

LA,C

lN,A

))
=

=
√
3δ + 8LC,NεK ≤

√
3(1 + 8LK(1 + · · ·+ (8LK)i−2)δ =

√
3(1 + · · ·+ (8LK)i−1)δ.

For the atoms Ai+1, Ci+1 in the (i + 1)-st residue, we get the same bound by replac-
ing LC,N with LN,A, LA,C ≤ L. The bound for i = m is

√
3(1 + · · · + (8LK)m−2)δ =

√
3
(8LK)m−1 − 1

8LK − 1
δ. Now consider the modified invariant B̂RI(S) obtained by multiply-

ing the i-th row of BRI(S) by
(8LK)i−1 − 1

8LK − 1
for i = 2, . . . ,m. Then the δ-closeness

of the corresponding invariant components in the metric L∞ means smaller deviations

|x(N ′
i)− x(Ni)| ≤ δ

8LK − 1

(8LK)i−1 − 1
, similarly for other components. This extra multiplica-

tive factor gives the bound |N ′
i+1 −Ni+1| ≤

√
3δ, similarly for all other atoms.

A Lipschitz constant µ plays no significant role because any metric on invariant values
can be divided by µ, which makes this constant 1. The second part of Theorem 4.8 offers
a smarter adjustment of BRI(S) to the modified invariant B̂RI(S) depending on a row
index of BRI(S) to guarantee the smaller Lipschitz constant

√
3.

5 Averaged invariants, diagrams, and barcodes

This section simplifies the complete invariant BRI to its average vector in R9 and also
introduces the diagram and barcode that visually represent BRI in a linear form.
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Definition 5.1 (average invariant Brain, standard deviation of invariants, diagram BID,
and barcode BIB). For any protein backbone S of m residues, the backbone rigid average
invariant Brain(S) ∈ R9 is the vector of nine column averages in BRI(S) excluding the first
row. The standard deviation can be computed in a similar way. The backbone invariant
diagram BID(S) consists of nine polygonal curves going through the points (i, c(i)), i =
2, . . . ,m, where c is one of the coordinates (columns) of BRI(S), see Fig. 3 (middle). For
each atom type such as N , the coordinates (x(Ni), y(Ni), z(Ni)) are linearly converted into
the RGB color value for i = 1, . . . ,m. The resulting three color bars for the ordered atoms
N,A,C form the backbone invariant barcode BIB(S), see Fig. 3 (bottom).

While the complete invariants BRI(S) can be used to compare backbones of the same
length, the average invariant Brain(S) ∈ R9 and the standard deviation invariant can
help to visualize all backbones of different lengths on the same map, see Fig.4.

Example 5.2 (hemoglobins). The PDB contains thousands of hemoglobin structures.
We consider here the structure 2hhb as a standard, and compare it with oxygenated 1hho,
which contains an extra oxygen whose transport is facilitated by hemoglobin. In both cases,
we considered the main chains (entity 1, model 1, chain A) of 141 residues. The TRIN
and BRI invariants are shown for the first 3 residues of 2hhb and 1hho in Table 1.

Figure 3. Row 1: the Lipschitz continuity of BRI from Theorem 4.1 is illustrated
on the left by perturbing hemoglobins in Example 4.7, whose main chains
A of 141 residues are shown in the middle (oxygenated 1hho in green,
standard 2hhb in cyan) and eight α-helices found by [37] and extract
from the PDB on the right. Row 2: the Backbone Invariant Diagram
(BID) of the hemoglobins 1hho vs 2hhb in the PDB, see Definition 5.1.
Row 3: the Backbone Invariant Barcode (BIB), see Example 5.2.

Fig. 3 (middle) illustrates the complexity of identifying similar proteins that can be
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given with very distant coordinates. The similarity under rigid motion becomes clearer by
comparing their diagrams and barcodes in Fig. 3 (rows 2 and 3).

More importantly, a rigidly repeated pattern such as α-helix or β-strand has constant
invariants over several residue indices, which are easily detectable in BID and visible in
BIB as intervals of uniform color. The PDB uses the baseline algorithm DSSP (De-
fine Secondary Structure of Proteins) [37], which depends on several manual parameters
and sometimes outputs α-helices of only two residues. For instance, the PDB files 1hho
and 2hhb in Fig. 3 (right) include HELX P4 consisting of only residues 50 and 51, and
HELX P5 of length 20 over residue indices i = 52, . . . , 71. Fig. 3 shows that a ‘constant’
interval of little noise appears only for i = 54, . . . , 70. Hence new invariants allow a more
objective detection of secondary structures, which will be explored in future work.

6 Duplicates with identical coordinates in the PDB

The linear time of the complete invariant BRI(S) has enabled all-vs-all comparisons for all
tertiary structures in the PDB, which was additionally cleaned by Protocol 3.2. To speed
up comparisons, Lemma 6.1 provides a faster computable lower bound for the metric
L∞(BRI(S),BRI(Q)). in terms of the average invariant Brain.

Lemma 6.1 (relation between metrics on BRI and Brain). Any protein backbones S,Q of
the same length satisfy the inequality L∞(Brain(S),Brain(Q)) ≤ L∞(BRI(S),BRI(Q)).

Proof of Lemma 6.1. If backbones S,Q have m residues and δ = L∞(BRI(S),BRI(Q)),
then any corresponding elements of the m× 9 matrices BRI(S),BRI(Q) differ by at most
δ. For any j = 1, . . . , 9, their averages of the j-th columns differ by at most δ because∣∣∣∣∣ 1m

m∑
i=1

BRIij(S)−
1

m

m∑
i=1

BRIij(Q)

∣∣∣∣∣ ≤ 1

m

m∑
i=1

|BRIij(S)− BRIij(Q)| ≤
1

m

m∑
i=1

δ = δ.

Hence L∞(Brain(S),Brain(Q)) ≤ δ as required.

The complete invariants and their summaries (averages and deviations) were com-
puted in 3 hours 18 min 21 sec. After comparing all (883+ million) pairs of same-
length backbones within 2.5 hours, we found 13403 pairs S,Q with the exact zero-distance
L∞(BRI(S),BRI(Q)) = 0 between complete invariants meaning that all these backbones
S,Q are related by rigid motion, but they may not be geometrically identical. However,
9366 of these pairs turned out to have x, y, z coordinates of all main atoms identical to
the last digit despite many of them (763) coming from different PDB entries.

In nine pairs, geometrically identical chains unexplainably differ in the sequences of
amino acids, see Fig. 5 (left). In a similar case [18], when five pairs of unexpected du-
plicates were found in the Cambridge Structural Database (CSD), all involved crystallo-
graphers concluding that a single atomic replacement should perturb geometry at least
slightly, so all coordinates cannot remain the same. Five journals started investigations
into the data integrity of the relevant publications [38]. We e-mailed all authors of struc-
tures marked in Fig. 5 (left) whose contacts we found. Two authors replied with details
and confirmed that their PDB entries should be corrected, see details in appendix A.

The duplicates in Fig. 5 were shown to the PDB validation team, who didn’t know
about the found coincidences (in coordinates) and differences (in amino acids) because

16



Figure 4. Heatmaps of average/standard deviation of the invariants across all
707K+ chains obtained by Protocol 3.2. The color indicates the num-
ber of chains whose pair of specified average/standard deviation is dis-
cretized to each pixel. Row 2: average/standard deviation pairs of
the invariants x(Ai), y(Ai), z(Ai) of the bonds NiAi from nitrogen to
α-carbon in Definition 3.4. Row 3: average/standard deviation pairs
of the invariants x(Ci), y(Ci), z(Ci) of the bonds AiCi from α-carbon to
the carbonyl carbon. Row 4: average/standard deviation pairs of the
invariants x(Ni), y(Ni), z(Ni) of the peptide bonds CiNi+1.

the validation is currently done for an individual protein only (checking atom clashes etc).
The recently published method [39] didn’t report any duplicates. Right now anyone can

17



Figure 5. Left: pairs of identical backbones that differ in amino acids (corrections
needed). Right: near-duplicates up to max deviation L∞ ≤ 0.01Å on
the log scale: 13394+9 pairs with L∞ = 0.

download the PDB files from Fig. 5 (left) and see the coincidences and differences with
their own eyes without any computations. Here are the links to the identical files in the
first row of Fig. 5 (left), where the 4-letter PDB id can be replaced with another one:
https://files.rcsb.org/download/1A0T.cif, https://files.rcsb.org/download/1OH2.cif.

One potential explanation of all coincidences is the use of the molecular replacement
method [40], which copies data from a previously deposited entry in the PDB to a new
structure that has the same (or similar) sequence but a low-quality electron density map.
However, since a full protein often consisting of several chains is not expected to be iden-
tical to a past entry, all coordinates should be additionally refined [41, 42]. Fig. 5 (right)
shows that such a refinement stage was missed for many thousands of PDB entries. See
details of all duplicates in the supplementary materials.

We have checked that the found duplicate backbones also have identical distance
matrices on 3m ordered atoms, which were slower to compute in time O(m2) over two
days on a similar machine. The widely used the DALI server [43] also confirmed the found
duplicates by the traditional Root Mean Square Deviation (RMSD) through optimal
alignment. The DALI takes about 30 min on average to find a short list of nearest
neighbors of one chain in the whole PDB. Extrapolating this time to 707K+ cleaned
chains yields 40+ years, slower by orders of magnitude than 6 hours needed for all our
comparisons of the new invariants BRI on the same desktop computer.

7 Discussion and scientific integrity in chemistry

Using protein structures as an important example, this paper advocates a justified ap-
proach to any real data. The first and often missed step is to define an equivalence relation
for given data because real objects can be represented in (usually infinitely) many differ-
ent ways. For example, a human can be recognized in a huge number of digital photos but
science progressed by developing DNA codes and other biometric data, which are being
included even in passports. All other objects (protein backbones for example) similarly
need complete invariants for unambiguous identification because a distance metric alone
is insufficient to understand deeper relations beyond pairwise similarities.

There is little sense in distinguishing most objects (including flexible molecules) under
rigid motion because translations and rotations preserve their functional properties. Hence
the input of all prediction algorithms should be invariant, ideally a complete invariant.
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under rigid motion. The Lipschitz bi-continuity of invariants is also essential because
adding a small noise should not lead to a drastically different output. Earlier versions of
Problem 1.2 with weaker conditions were solved for 2D lattices [44], periodic crystals [18],
and finite clouds of unordered points [45] in the new area of Geometric Data Science.

The crucial novelty in the proposed approach is treating (the rigid class of) any
experimental structure (protein backbone), e.g. from the ‘gold standard’ 220K+ entries
of the PDB, as objective ground truth instead of any manually assigned labels.

Problem 1.2 asked for an analytically defined invariant I whose explicit formula should
remain unchanged for any new data without usual re-training in machine learning.

While traditional approaches explored more data within continuously infinite spaces in
a ‘horizontal’ way, solutions to Problem 1.2 and its analogs offer ‘vertical’ breakthroughs
by building geographic-style maps of data spaces as viewed from a satellite.

The continuous maps of the PDB in Fig. 2 can be zoomed in at any spot and mapped
in further invariants. This is a huge advantage in comparison with any dimensionality
reduction, which was proved [46] to be discontinuous (making close points distant) or
collapsing an unbounded region to a point (losing an infinite amount of data).

The main contributions are Theorems 3.5, 4.1, 4.8, which solved Problem 1.2 for
protein backbones and detected thousands of previously unknown (near-)duplicates in the
PDB. Improving the ‘gold standard’ of the PDB is urgently needed to avoid predictions
based on the currently skewed data. The supplementary materials (available by request)
include the Python code and table of all 9366 pairs of exact duplicates whose correspond-
ing coordinates coincide with all digits and hence need further refinement. We thank all
reviewers in advance for their time and for supporting data integrity in science.

This research was supported by the Royal Academy Engineering Fellowship IF2122/186,
EPSRC New Horizons EP/X018474/1, Royal Society APEX fellowship APX/R1/231152.
The authors thank Mariusz Jaskolski and Alex Wlodawer for their helpful comments on
the first drafts and any other reviewers for their valuable time and fruitful suggestions.

A Appendix: updates on duplicates in the PDB

This appendix includes the confirmations of several duplicates found here and confirmed
by their authors, and also subsequent updates in the PDB. After finding the first duplicates
in Fig. 5 (left), we contacted the authors of the underlying publications. Since these
structures were quite old (up to 30 years), many of their authors could not be found online
but we e-mailed everyone whose contact details were accessible. Only two authors replied
with details. The common author of the PDB entries 1a0t and 1oh2, Kay Diederichs, has
confirmed the duplication error, see the screenshot of his email in Fig. 6.

Prof John Helliwell studied our duplicates in the supplementary materials including
those with the same sequences of amino acids. After finding his pair of duplicates, he
e-mailed us to confirm this error on 15th February 2023 (see Fig. 7).

After reading the first draft of this paper, John confirmed on 13th October 2024 that
“4yta supersedes 3unr”, so we will pass this to the PDB. Though we received only two
personal confirmations, after sending the e-mails with duplicates in December 2022, we
noticed that five PDB entries in the initial list of duplicates were updated, see Table 2.

The first two updates for 1ruj and 4rhv appeared at the same time in January 2023. In
February 2023, we talked to the PDB validation team, who confirmed that PDB entries
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Figure 6. Author’s confirmation of the duplication in the PDB entries 1a0t and
1oh2, see Fig. 5 (left).

Figure 7. Author’s confirmation of duplication for the PDB en-
tries 3unr and 4yta, which can be found in the Excel file
PDB 4872pairs allCAs equal xyz by red flags in the supplementary
materials.

are updated only by authors’ request or by their permission. After that, three more PDB
entries were updated in March and April 2023, see the last three rows in Table 2.
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Table 2. Five PDB entries from Fig. 5 (left) were modified after our initial contacts
in December 2022. All original and updated files are still accessible online.

PDB entry date of last modification time of last modification
4rhv Fri, 13 Jan 2023 13:55:14 GMT
1ruj Fri, 13 Jan 2023 13:55:14 GMT
1gli Fri, 10 Mar 2023 14:09:09 GMT
3hhb Fri, 10 Mar 2023 14:09:09 GMT
1cov Fri, 14 Apr 2023 13:14:08 GMT

The older versions of the PDB files are available via ftp://snapshots.rcsb.org/20230102.
The other duplicates from the lower half of Fig. 5 (left) have not been publicly reported
yet, so their current files show the existing duplication in geometry with unexplained
differences in sequences of amino acids. If the sequences of two protein chains coincide,
their geometries can be expected to be close, though the neighboring chains in different
proteins should affect some geometric coordinates at least slightly. Because all x, y, z
coordinates in the PDB are given with three decimal places relative to 1Å, a distance of
less than 0.01Å is considered negligible, especially due to floating point errors.
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