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What to expect in the tutorial
Practical motivations, problem statements, a few
answers leading to new principles for molecules
and materials, and many more open questions.

First 10 min: what real data objects do we
consider? What data objects are the same?

Next 50 min: the finite case (point clouds) with
applications to proteins and other molecules.

5-min break after the end of the first hour.

Final 50 min: the periodic case for materials.



What is Geometric Data Science?
Data can mean many objects: lattices, periodic
crystals, point clouds, molecules, protein chains

These data objects are often given via digital
representations that can be highly ambiguous:

different representations may refer to the same
object but what do we really mean by “same”?

Sacchi et al. Same or different - that is the
question: identification of crystal forms from
crystal structure data. CrystEngComm, 2020.



Three axioms of an equivalence
A relation A ∼ B between any data objects is
called an equivalence if the three axioms hold:

(1) reflexivity: any object A ∼ A;

(2) symmetry: if A ∼ B then B ∼ A;

(3) transitivity: if A ∼ B and B ∼ C, then A ∼ C.

The transitivity axiom guarantees that all
objects are in disjoint classes. Any justi-
fied classification needs an equivalence.

Equality is an equivalence: 0.5 = 50% = 1
2 = 2 : 4



Different equivalence relations
Chemical : compounds A ∼ B if A,B have the
same composition. Ok, but diamond, graphite of
pure carbon have vastly different properties.

By property : molecules A ∼ B if A,B have the
same property. Ok, but molecules that share
one property can differ by other properties.

Space-group types : crystals A ∼ B if A,B have
isomorphic space groups. Fedorov (1891): 219
or 230 classes. Then NaCl, MgO, TiC, LaN, NaI,
RbF, SrS, ... have the same group (225, Fm3̄m).



What is the strongest relation?
Many real-life objects are rigid and should be
considered equivalent under rigid motion

= a composition of translations and rotations;

or isometry = rigid motion + reflections in Rn.

In a general metric space, an isometry is any
map that preserves all inter-point distances.



Point clouds are universal inputs
If all m points of a cloud C ⊂ Rn are ordered
p1, . . . ,pm, then C is reconstructed (uniquely up
to isometry) from the distances dij = |pi − pj |,

which are also Lipschitz continuous under
perturbations: perturbing any point pi up to ε
changes any distance dij only up to 2ε.

In practice, many clouds are unordered.

The brute-force way to compare clouds of m
unordered points by m! distance matrices is
unrealistic because of the exponential time.
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The backbone of a protein chain
Any protein chain has a primary structure: a
sequence of 20 amino acid residues whose side
chains Ri are joined to alpha-carbon atoms Ai .

A protein backbone is a se-
quence of ordered triplets
of the atoms (1) nitrogen
Ni , (2) alpha-carbon Ai , (3)
carbonyl carbon Ci , where
i = 1, . . . ,m (# residues).



Weaker vs stronger equivalences
Easy equivalence: backbones are the same if
their lengths (number m of residues) are equal.

This equivalence by length is weaker than by
sequence of amino acids because many
different sequences have the same length.

If backbones S,Q ⊂ R3 coincide as ordered
sets of atoms, they should (?) have the same
sequence. The converse fails for different
backbones that have the same sequence.

What protein backbones can be called different?



What is the strongest equivalence?

Any rigid motion preserves
the shape of a backbone, but
more flexible deformations can
change protein properties.

So rigid motion is the strongest equivalence
S ∼= Q on protein backbones S,Q in practice.



Spaces of equivalence classes
All protein backbones form a finite space (of
equivalence classes) by length, a much larger
finite space by primary structures (sequences),
and a huge infinite Backbone Rigid Space of all
rigid classes: noise change a backbone class.

How can we distinguish rigid backbones?



The importance of invariants
An invariant I is a property preserved under
given equivalence (rigid motion in the sequel).

If backbones S ∼= Q are exactly matched by
rigid motion, then I(S) = I(Q). Equivalently, if
I(S) ̸= I(Q), then S ̸∼= Q are rigidly different.

The length m and the total sum of AiAi+1

distances between Cα’s are rigid invariants.

But atomic coordinates are non-invariants and
hence cannot reliably distinguish protein chains.



(In)complete invariants

The torsion angles φi , ψi

are invariants of a back-
bone under rigid motion.

The sequence (ψ1, φ2, . . . , φm) of 2m − 2 torsion
angles is often considered enough to represent
a backbone, not in theory and not in the PDB.

The 9m − 6 degrees of freedom need an
invariant in R9m−6. An invariant I is called
complete if I(S) = I(Q) implies that S ∼= Q.



Invariants need a metric
A complete invariant on its own can answer only
the binary question: equivalent or not? Because
of noise, all real backbones differ at least
slightly, which should be continuously quantified
by a distance metric d satisfying the axioms:

d(I(S), I(Q)) = 0 ⇔ I(S) = I(Q),
symmetry d(I(S), I(Q)) = d(I(Q), I(S)),
triangle inequality d1 + d2 ≥ d3.

A complete invariant I gives a discontinuous
metric: d(I(S), I(Q)) = 0 for S ∼= Q, else d = 1.



Metrics benefit from invariants
The Root Mean Square Deviation (RMSD)
between backbones S,Q ⊂ R3 of m atoms is

RMSD(S,Q) = min
f

√
1
m

m∑
i=1

||f (si)− qi ||2

minimized over all rigid motions f , where si ,qi

are corresponding atoms of S,Q, respectively.

A metric, e.g. RMSD, gives distances between
backbones. A map of classes needs complete
invariants for geographic-style coordinates.



Mapping problem for backbones
Find a map I : {backbones} → R9m−6 such that

(1) S ∼= Q in R3 if and only if I(S) = I(Q);

(2) any S ⊂ R3 can be reconstructed from I(S);

(3) there are a metric d and λ > 0 such that, for
any ε > 0, if Q is obtained from S by perturbing
every atom up to ε, then d(I(S), I(Q)) ≤ λε;

(4) there is µ such that, for any backbones S,Q
with δ = d(I(S), I(Q)), all their atoms can be
matched up to µδ by a rigid motion in R3;

(5) time O(m) for I, d , reconstruction, alignment.



BRI = Backbone Rigid Invariant
Define the orthonormal basis of each residue:
origin at Ai , normalize

−−→
AiNi to u⃗i , choose v⃗i in

the plane of △NiAiCi , finally set w⃗i = ui × vi .
BRI(S) of m residues is
the m × 9 matrix whose
columns include coordi-
nates of

−−−−→
Ci−1Ni ,

−−→
NiAi ,

−−→
AiCi

in the basis u⃗i−1, v⃗i−1, w⃗i−1.

The 1st row has 3 coordinates fixing △N1A1C1.

Theorem: BRI solves the mapping problem.



Distance metrics on invariants BRI
BRI(S), the metric L∞ between invariants, a
reconstruction of S ⊂ R3 from BRI(S) uniquely
under rigid motion can be found in time O(m).

The m × 9 matrix BRI (with 6 zeros in row 1)
flattens to a vector of 9m − 6 coordinates in Å.

The simplest metric on vectors
L∞(BRI,BRI′) = maxi |BRIi − BRI′i | computes
the maximum deviation of coordinates. We’ll

also use RMS =

√
1

9m − 6

9m−6∑
i=1

|BRIi − BRI′i |2.



707K+ ‘clean’ chains in the PDB
All 220K+ entries in the PDB have 1M+ chains.

We kept 707K+ ‘clean’ chains after filtering out:

4513 non-proteins (the entity is not ‘protein’);

178153 disordered chains (occupancy < 1);

201648 chains whose residues have
non-consecutive integer indices;

9941 incomplete chains miss some main atoms

4364 chains with non-standard amino acids.



Times of pairwise comparisons
On a typical desktop, the invariants BRI for
704K+ backbones are computed in 3.5 hours.

After comparing all (883+ million) pairs of
same-length backbones in 2.5 hours, we found

13403 pairs S,Q with the exact zero-distance
L∞(BRI(S),BRI(Q)) = 0. The completeness of
BRI implies the backbones S,Q in all these
pairs can be exactly matched by rigid motion,

but S,Q may not be geometrically identical.



Exact geometric duplicates
9366 pairs turned out to have x , y , z coordinates
of the main atoms N,Cα,C in all residues
identical to the last digit without rigid motion.

763 such pairs are in different PDB entries.

In 9 pairs, geometric duplicates surprisingly
differ by primary sequences of amino acids,

which seems physically impossible because
replacing one amino acid with a different one
should affect main atoms at least slightly.



Coincidences and differences
Extra symbols below are model id and chain id.

chain 1 chain 2 # identical Cα # different acids
1a0t-0-Q 1oh2-0-Q 413 9
2hqe-0-A 2o4x-0-A 217 1, GLN̸=GLU

Kay Diederichs accepted the duplication of 1a0t,
1oh2: “PDB entries can multiply on their own! ...
your geometric comparison method identified an
error in the PDB.” After our discussions with the
PDB validation team, the CIFs of duplicates
1cov, 1gli, 1ruj, 3hhb, 4rhv were changed.



PDB duplicates keep emerging
When a new protein is deposited, it is validated
individually, no comparison with all structures.

PDB chain1 PDB chain2 diff. acids max resolution
1gli-B,D 3hhb-B,D 1/146 2.5Å
2hqe-A 2o4x-A 1/217 2Å
3msg-A 3mua-A 1/330 1.5Å
7u16-A 7u18-A 1/241 2.7Å
7u16-B 7u18-B 1/135 2.7Å
8fdz-A 8fe0-A 1/200 2.5Å

See details in Anosova et al, arxiv:2410.08203.



Many more near-duplicates



Back to clouds of unordered points
Classes of point clouds under isometry (or
another equivalence) can be distinguished by

an invariant I : {objects} → simpler space such
that if A ∼ B then I(A) = I(B) or, equivalently,

if I(A) ̸= I(B) then A ̸≃ B meaning that I has

no false negatives : different representations
A ≃ B of the same object with I(A) ̸= I(B).

The size of a cloud is an isometry invariant, the
center of mass is not invariant under translation.



Equivariance vs invariance
Let a group, say G = E(n), act on point clouds.

A function h : {all clouds} → a simpler space is
G-equivariant if h(g(C)) = Tg(h(C)), where Tg

is a map depending on g, e.g. Tg is g acting on
the mid-point h(C) between closest neighbors.

The stronger (restrictive) concept is invariance
when Tg is the identity. An isometry invariant I
must satisfy I(A) = I(B) for any isometric clouds
A ≃ B. Equivalently, I(A) ̸= I(B) ⇒ A ̸≃ B, so I
has no false negatives, can distinguish A ̸≃ B.



Do invariants suffice? Yes!
Invariants distinguish objects under equivalence
(by definition), while all non-invariants don’t!

Equivariants are used to predict forces (vectors
at points) that move one cloud to another cloud.

Any such sequence of (rigid classes of) clouds
Ct ⊂ Rn depending on a time t can be studied in
terms of only invariants I(Ct) without vectors.



Isometry problem for real data
Find an invariant I : {isometry classes of data}
→ a simpler space satisfying these conditions:

Completeness: any objects A,B are isometric if
and only if I(A) = I(B), so I is a DNA-style code
with no false negatives and no false positives.

Lipschitz continuity : there is a metric d :
d(I(A), I(B)) = 0 ⇔ A,B are isometric,
d(I(A), I(B)) = d(I(B), I(A)), d1 + d2 ≥ d3

and a constant λ : if B is obtained by perturbing
each point of A up to ε, then d(I(A), I(B)) ≤ λε.



Time and geography matter!
The conditions above allow a simple solution.

Complete : I(A) = {all isometric images of A},
m! distance matrices for one m-point cloud, a
decomposition in infinitely many basis functions

A practical invariant needs harder conditions.

Computability: the invariant I and the metric d
should be computable in polynomial time in the
number m of points for a fixed dimension n.

Geo-style maps: describe all realizable values
I(A) that allow us to reconstruct an object A.
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Euclid’s ideal solution for triangles

SSS theorem for m = 3 points in any Rn. Two
triangles are congruent (isometric) if and only if
they have the same triple of sides a,b, c (up to
all 6 permutations). For rigid motion (without
reflections), allow only 3 cyclic permutations.

The Cloud Isometry Space
CIS(Rn;3) is the cone in R3

{0 < a ≤ b ≤ c ≤ a + b}
bounded by three planes.



Generically complete invariants
Is the problem open for quadrilaterals in R2?

One can train neural networks to experimentally
output isometry invariants but it can be hard to
prove completeness and continuity under noise.

Boutin, Kemper, 2004: the vector of all sorted
pairwise distances is generically complete in Rn

distinguishing almost all clouds of
unordered points except singular ex-
amples. These non-isometric clouds
have the same 6 pairwise distances.



Pairs of singular quadrilaterals
The 5-dimensional space of 4-point clouds has
non-isometric {p1,p2,p3,p±

4 } with the same 6
pairwise distances depending on 4 parameters.

Are there stronger invariants of point clouds?



Pointwise Distance Distributions
For a set S of m points p1, . . . ,pm in a metric
space, choose any number 1 ≤ k < m of
neighbors and build the m × k matrix D(S; k).

PDD(T ;3) =

(
1/2

√
2 2

√
10

1/2
√

2
√

10 4

)
̸=

PDD(K ;3) =

 1/4
√

2
√

2 4
1/2

√
2 2

√
10

1/4
√

10
√

10 4

 .

Collapse identical rows and assign weights. The
matrices PDDs are continuously compared by
Earth Mover’s Distance (EMD), NeurIPS 2022.



Invariants stronger than PDD
Conjecture: PDD is complete for clouds in R2.

PDD is not complete for some clouds in R3, the
stronger invariants below distinguished them.

Published in: Daniel Widdowson, Vitaliy K.
Computer Vision & Pattern Recognition 2023.



Higher-order distributions
Let C be a cloud of m unordered points in a
metric space. SDD(C;h) for h = 1 is PDD(C).

Any sequence A ⊂ C of h points has the matrix
RDD(C;A) with m − h permutable columns of
distances from q ∈ C − A to all points of A.

The Relative Distance Distribution for

A =

(
p2

p3

)
is RDD(C;A) = [a;

(
c
b

)
].

RDD(C;

(
p3

p1

)
) = [b;

(
a
c

)
], RDD(C;

(
p1

p2

)
) = [c;

(
b
a

)
]



Simplexwise Distance Distribution
Classes of these RDD pairs with the distance
matrix of A (up to permutations of points in A)
for all h-point unordered subsets A ⊂ C form
SDD(C;h). For h = 2, the stronger invariant
SDD(C;2) distinguished all counter-examples to
the completeness of easier past invariants in R3

Theorem : for any m-point cloud C in a metric
space, SDD(C;h) is computable in time
O(mh+1/(h − 1)!) and has Lipschitz constant 2
in EMD, time O(h!(h2 + m1.5 logh m)l2 + l3 log l).



Hard-to-distinguish sets in R3

The 6-point sets T± with 3 free parameters have
the same PDD(T±) but different SDD(T±;2).



Simplexwise Centered Distribution
In Rn, fix the center of a cloud C at p0 = 0 ∈ Rn.

For any ordered subset A = (p1, . . . ,pn−1) ⊂ C,
OCD(C;A) is the pair of the distance matrix
D(A ∪ {0}), matrix M with m − n + 1 permutable
columns of n distances |q − pi | for q ∈ C − A.

To reconstruct C ⊂ Rn up to rigid motion, we
add the sign of the determinant on the vectors
from each q ∈ C − A to the points p0, . . . ,pn−1.

SCD(C) is the unordered set of classes of
OCD(C;A) for all (n − 1)-point subsets A ⊂ C.



The key to Lipschitz continuity
The discontinuity of a sign in degenerate cases
such as 3 points in a line is resolved by the new
strength σ(B) = V 2/p2n−1 of a simplex, where
V is the volume, p is the half-perimeter of B.

The strength of a triangle B ⊂ R2 with sides

a,b, c is σ(B) =
(p − a)(p − b)(p − c)

p2 , which is

‘roughly linear’ unlike the ‘quadratic’ area of B.

Theorem : in Rn, the strength σ is Lipschitz
continuous with a constant λn, e.g. λ2 = 2

√
3.



Complete invariant SCD in Rn

Theorem : for any n-dimensional cloud C of m
unordered points, the Simplexwise Centered
Distribution SCD(C) is a complete invariant
under rigid motion in Rn, computable in time
O(mn/(n − 4)!), has Lipschitz constant 2 in the
Earth Mover’s Distance (EMD), computable in
time O((n − 1)!(n2 + m1.5 logn m)l2 + l3 log l), l is
the number of different OCDs in given SCDs.

The complete isometry invariant is the pair of
SCD(C) and SCD(C) with reversed signs.



For each 1-point subset A = {p} ⊂ S, the
distance matrix D(A ∪ {0}) on two points
is one number 1. Then M(S;A ∪ {0}) has

m − n + 1 = 3 columns. For p1 = (1,0), we have

M(S;

(
p1

0

)
) =


√

2
√

2 2
1 1 1
− + 0

, whose three

columns are ordered as p2, p3, p4. The sign in
the bottom right corner is 0 because p1,0,p4 are
in a straight line. By the rotational symmetry,

SCD(S) is one OCD = [1,


√

2
√

2 2
1 1 1
− + 0

].



Cloud Isometry Spaces CIS(Rn;m)
CIS(Rn;m) is the space of isometry classes of
clouds of m unordered points in Rn. For m = 4,
(sub)classes of quadrilaterals in R2 are often
visualized by a tree, not on a continuous map.

CIS(R2;4) has dimension 5. Apply-
ing uniform scaling gives the smaller
quotient CSS(R2;4) of dimension 4.

The tetrahedron on any 4 points in R2 has
volume 0 expressed via 6 pairwise distances,
which are unsuitable for a geographic-style map.



Cloud Similarity Space CSS(R2;3)
Triangles under rigid motion + uniform scaling.

Fix the center of mass at 0, point p1 at (R,0). A
position of p2 in the yellow region determines p3.



Continuous map of paralellograms
Fix the center at 0, points p1,p3 at (±R,0).
Then p2 in the yellow region determines p4.

Rectangles and rhombi live on the boundary.



Hierarchy of rigid invariants
Fast: Sorted Radial Vector SRV = decreasing
distances from 0 (centre of mass) to m points.

Stronger: Sorted Distance Vector SDV, O(m2).

Even stronger: PDD(C;m − 1) in time O(m2).

Complete: SCD(C) in time O(m3) for C ⊂ R3.

The QM9 database has 130K+ molecules with
atomic coordinates and 873,527,974 pairs of
molecules of the same size. The hierarchy of
the invariants above distinguished all pairs in
QM9 within a few hours on a desktop computer.



Principle of Molecular Rigidity
Chemically different molecules differ rigidly.

invariant distance, Å molecule A molecule B
SRV 0.02057 H3C4N3O2 H4C5N2O1

SDV 0.05505 H3C4N5 H3C5N3O1

PDD 0.05145 H3C4N5 H3C5N3O1

SCD 0.07054 H4C5N4 H4C6N2O1

The map: {molecules} → { clouds of atomic
centers} is injective modulo rigid motion in R3.

New definition : a molecular structure is a
class of atomic clouds under rigid motion in R3.



Geo-graphic-style maps in GDS
All
QM9
mole-
cules.
The
units
are
Å =

10−10

m.



Use further invariants to zoom in

QM9
sub-
set:
SRV1 =

SRV2.



Objects: all periodic crystals
We study solid crystalline materials at the
atomic scale. What is a crystal on the left?

Questions: What is a crystal? What crystals
are the same? If different, how much different?



A periodic point set (crystal)
Any basis v1, . . . , vn of Rn defines the unit cell
U = {

∑n
i=1 tivi | 0 ≤ ti < 1} and the lattice

Λ = {
∑n

i=1 civi | ci ∈ Z}. For any finite motif of
points (atoms) M ⊂ U, the periodic point set is
S = Λ + M = {v + p | v ∈ Λ,p ∈ M} ⊂ Rn.

Different pairs (basis, motif) give equivalent sets.



Was a crystal structure defined?
P. Sacchi et al. Same or different - that is the
question: identification of crystal forms.
CrystEngComm, 22(43), 7170-7185 (2020).

Definitions are not final without equivalence.



Isostructural ‘definition’
IUCr online dictionary: “crystals are said to be
isostructural if they have the same structure ...
CaCO3, NaNO3, FeBO3 are isostructural”.

The conventional representa-
tions in the International Ta-
bles of Crystallography are
all correct in theory but are
no longer practical because

all data are noisy and tiny displacements of
atoms have very different (standard) settings.



Discontinuity of conventional cells
Any reduced or conventional cell is discontin-
uous under noise and atomic displacements.

All discrete symmetry-based crystallography
cannot continuously quantify a distance be-
tween crystals. RMSD, 1-PXRD and all others
are discontinuous or fail the metric axioms.

Any pseudo-symmetry (equivalence up to a
threshold > 0) leads to a trivial classification.



Definition of a crystal structure
Since crystal structures are deter-
mined in a rigid form, the strongest
relation in practice is rigid motion
= translations + rotations in R3.

Slightly weaker : isometry = rigid motion +
reflections = any map preserving distances.

Anosova et al. IUCrJ 2024: one periodic set ̸=

a crystal structure = a rigid class of crystals

=
infinitely many periodic crystals (CIFs) in R3

equivalence under rigid motion (or isometry)



Crystals live in a continuous space
All crystals consist of discretely lo-
cated atoms, which have continuous
real-valued coordinates in R3.
A small perturbation produces a
slightly different crystal not rigidly
equivalent to the original structure.

If we restrict comparisons only to a fixed space
group, we cut the continuous space into disjoint
pieces (230 in 3D), so many near-duplicates fall
on different side of boundaries, which is tragic!



Descriptors vs isometry invariants
An invariant is a function I : { isometry classes
of crystals } → {a metric space} of numbers,
vectors, ..., where comparisons are easier.

Crystals can be distinguished only by invariants
taking the same value on all equivalent objects.

If S ≃ Q are isometric, then I(S) = I(Q); or

if I(S) ̸= I(Q), then S ̸≃ Q are not isometric.





Isometry classification problem
Find an easy continuous and complete isometry
invariant I for periodic sets of unordered points.

Invariance : if point sets S ≃ Q are isometric,
then I(S) = I(Q), so I should be well-defined on
isometry classes or I has no false negatives.

Completeness : if I(S) = I(Q), then S ≃ Q are
isometric, hence I has no false positives.

Continuity : find a metric d and a constant λ
such that if Q is obtained by perturbing every
point of S up to ε, then d(I(S), I(Q)) ≤ λε.



Harder practical requirements
Reconstruction (inverse design): any S ⊂ Rn

can be reconstructed from its invariant I(S).

Computability : I,d , and reconstruction of S
from I(S) can be obtained in polynomial time in
the motif size (number of atoms in a unit cell),
hence no infinite/exponential size invariants.

If all conditions hold, I is universal for all types
of periodic crystals, independent of symmetry.

If I is simple enough, I defines geographic-style
coordinates on the space of all periodic crystals.



Average Minimum Distance: AMD

For a finite or periodic set S ⊂ Rn, let dik be the
distance from a point pi in a motif, i = 1, . . . ,m,
to its k -th nearest neighbor in S. For k ≥ 1,
Average Minimum Distance AMDk = 1

m

∑m
i=1 dik .



Pointwise Distance Distribution
For a periodic set S with m points p1, . . . ,pm in a
motif, choose any number k ≥ 1 of neighbors,
build the matrix PDD(S; k) with at most m rows.

For different S, the matrices PDD(S; k) can
have different numbers of rows with weights but
can be compared by Earth Mover’s Distance.



Earth Mover’s Distance (EMD)

Continuity. If we perturb all points of a set S
within their ε-neighborhoods, the perturbed set
S′ has EMD(PDD(S; k),PDD(S′; k)) ≤ 2ε.

EMD minimizes a cost of matching weighted rows.



Key results from NeurIPS 2022
Increasing a number k of neighbors only adds
more columns, k is a degree of approximation.

Theorem. Any generic periodic point set S (with
distinct inter-point distances ignoring periodicity)
can be uniquely reconstructed from the lattice
invariants and PDD(S; k) with all distances up to
a double covering radius of S in dimension 2, 3.

Theorem. For any finite or periodic set S with m
motif points in Rn, PDD(S; k) is computable in
near-linear time O(km log(m) log2 k) for fixed n.



5 pairs of ‘needles in a haystack’
T2-14 vs T2-15
crashed Platon
comparisons.

360B+ pairwise comparisons of PDD invariants
over minutes on a modest desktop for 850K+
periodic crystals in the Cambridge Structural
Database (CSD)

detected five isometric pairs
with different chemistry, which seems physically
impossible, under investigation by 5 journals:

HIFCAB vs JEPLIA (one atom Cd ↔ Mn), ...
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Detecting (near-)duplicates
CSD Mercury’s RMSD (on 15 molecules) was
estimated to require 37+ thousand years for all
pairwise comparisons on the same machine.

All energy minimization can output many
approximations to the same local minimum.

The big loophole: take the CIF (and structure
factors) of a real crystal, change (or double) a
unit cell, perturb atoms (to get a new motif in a
larger primitive cell), replace some atoms, and
claim as new (CCDC has implemented PDD).



Nature papers in November 2023
Google’s GNoME paper (led by Dogus Cubuk):
DFT computations predicted 2+ million crystals.

Berkeley’s A-lab paper (led by Gerbrand Ceder)
claimed to have synthesized 43 of 58 crystals.

The review by Palgrave and Schoop in PRX
Energy (March 2024): “none of the materials by
A-lab were new : the large majority were
misclassified, and a smaller number were
correctly identified but already known”, see our
analysis in Widdowson et al, arxiv:2410.13796.



Google’s GNoME database
Google has made public 384K+ ‘stable’ crystals
(close to the boundary of the convex hull of
known crystals): any such ‘stable’ crystal can be
perturbed to get many more slightly different
(new?) ‘stable’ crystals, also on the boundary.

The review “Artificial Intelligence Driving
Materials Discovery?” (Chemistry of Materials,
April 2024) by R.Seshadri and A.Cheetham
found “scant evidence for compounds that fulfill
the trifecta of novelty, credibility, and utility”.



Thousands of (near)-duplicates
Many GNoME’s crystals have geometric near-
duplicates in the ICSD and Materials Project,
measured by EMD on PDDs with k = 100.

EMD ≤ 10−5 10−4 10−3Å 0.01 0.02 0.03
ICSD 38 303 757 2454 6002 13165

Mat. Proj. 83 452 848 3457 10725 24416

Since the smallest inter-atomic distance is about
1Å = 10−10m, any perturbations of atoms up to
a small fraction of 1Å can be considered noise.



Example near-duplicates

These crystals are perturbations up to 10−4Å.
crystal database ID composition
1st GNoME 01cd76eb18 LiScPdPt
2nd ICSD 54594 Cu2HfIn
3rd Mat. Project 1186003 MnZnAu2



Identical CIFs in the GNoME
Filtering by unit cells detected numerous duplicates.

group size
= #CIFs

CIFs are
identical texts

all numbers
coincide

rounding
to 4 digits

rounding
to 2 digits

10 0 0 0 1
9 0 1 1 0
7 0 1 1 2
6 0 2 2 3
5 0 2 3 16
4 1 6 8 81
3 43 21 43 557
2 1,089 411 872 6,950
total 2,311 3,258 4,259 18,328



The largest group of 9+1 duplicates
GNoME id chemical formula all digits are equal
082738d51d Dy1Y6Ho13Cd6Ru2 in a group of 9
1fba8c028f Dy2Y4Ho14Cd6Ru2 9
39fe92e2ee Tb2Y4Ho14Cd6Ru2 9
6d47ae3d9f Tb3Y3Ho14Cd6Ru2 9
703ed1d823 Tb6Ho14Cd6Ru2 9
78fcd9d814 Tb1Y5Ho14Cd6Ru2 9
976f8cb279 Y6Ho14Cd6Ru2 9
a30e9d8c9b Tb5Y1Ho14Cd6Ru2 9
b8c0e953e2 Tb4Y2Ho14Cd6Ru2 9
a18d30a9fc Tb6Ho14Cd6Re2 in a group of 1



CRISP: Crystal Isometry Principle
Map: {real crystal} → {set of atomic centres}
sends different crystals to non-isometric sets,
checked for all periodic crystals in the CSD, so

chemistry reduces to geom-
etry. All known and undis-
covered periodic crystals live
in the Crystal Isometry Space
(CRIS) of isometry classes of
periodic sets. All real crystals
are ‘visible stars’ in this contin-
uous crystal universe.



Vision of the crystal universe
Sally Price FRS: embarrassment of over-prediction, too
many optimized structures: only local peaks, no locations.



CSD in meaningful coordinates

It’s a projection with well-defined coordinates.
Any crystal has a unique location on such maps.



Carbon allotropes on a crystal map

ADA1 = average distance to the 1st atomic neighbor
(adjusted by subtracting the proved asymptotic curve).



Next: structure → properties
In the past, properties were slowly predicted by
incomplete or discontinuous descriptors.

Without losing data, one can express properties
of structures as functions of invertible invariants
on geographic-style maps of moduli spaces.



Collaborations are welcome!
We can similarly explore continuous spaces of
other data objects (graphs, images, meshes)
under rigid motion or other equivalences.

The key concepts needed for real data objects
are equivalence (to detect identical objects) and
metric, which should be computable, continuous
under perturbations to quantify the similarity.


