What is a periodic crystal S?

A crystal S is traditionally defined by a motif of atoms periodically translated along basis vectors of a unit cell.

Since crystals are determined in a rigid form, their strongest equivalence is rigid motion, which is a composition of translations and rotations.

A **new definition of a crystal**

A periodic crystal is a class of all (infinitely many) periodic point sets that are equivalent to each other under rigid motion, or a slightly weaker isometry = rigid motion + reflection.

A Crystallographic Information File is only one of the infinitely many representations (photos) of a crystal but comparisons need a mathematical description of the exact shape (materials genome).

Crystal descriptors should be invariant (preserved under any rigid motion). The symmetry group and reduced cell are invariant but discontinuous under almost any perturbation.

Mapping crystals problem

Find a map $I : \{\text{periodic crystals}\} \rightarrow$ a simpler space with the conditions:

invariance : $S \simeq Q$ are isometric $\Rightarrow I(S) = I(Q)$, so no false negatives;

completeness : $I(S) = I(Q) \Rightarrow S \simeq Q$ are isometric, hence no false positives;

continuity : $I(S)$ continuously changes under perturbations of S in a distance metric d satisfying the axioms $d(I(S), I(Q)) = 0 \Leftrightarrow S \simeq Q$ are isometric, $d(I, I') = d(I', I)$, inequality $d(I, I') \leq d(I, I'') + d(I'', I')$; any S can be reconstructed from $I(S)$.

AMD invariants of crystals

For any p_i (one of m motif points) in a cell of a crystal S, let d_{ik} be the distance to its k-th closest neighbour in the infinite set S. The Average Minimum Distance [1] is $\text{AMD}_k = \frac{1}{m} \sum_{i=1}^{m} d_{ik}$. The square and hexagonal lattices have these AMD sequences:

Stronger invariant PDD [1]

Pointwise Distance Distribution

For any motif point p_i, put its distances $d_{ij} \leq \cdots \leq d_{ik}$ into a row of the $m \times k$ matrix. If j of m rows are identical, collapse them into one row of weight j/m. The matrix $\text{PDD}(S; k)$ is an unordered distribution of rows with weights, strictly stronger than the Pair Distribution Function. Increasing k adds more columns to PDD without changing the first columns.

PDD is a continuous invariant

If atoms are perturbed up to ϵ, then $\text{PDD}(S; k)$ changes up to 2ϵ in Earth Mover’s Distance EMD, which compares PDD matrices of different sizes.

PDD generically complete & fast

Under a tiny perturbation, any crystal becomes generic, e.g. has no repeated distances except due to periodicity.

Any generic periodic crystal can be reconstructed, uniquely up to isometry in 3D, from lattice invariants and $\text{PDD}(S; k)$ for a large enough k, and computed in near-linear time in m, k.

New crystal by PDD analogy

PDD can include atom attributes but compares any periodic sets of atoms or molecular centers [2] without fixing a symmetry group or chemistry.

‘Needles in a haystack’

More than 200 billion comparisons of AMD and PDD of all 660K+ periodic crystals (no disorder, full 3D structure) in the Cambridge Structural Database for $k = 100$ (now in one hour) on a modest desktop detected 5 pairs of geometric duplicates with one atom replacement [1], which seems physically impossible, e.g. HIFCAB vs JEPLIA (Cd ↔ Mn).

Five journals are investigating the integrity of the underlying articles.

Crystal Isometry Principle

Map: periodic crystals \rightarrow periodic point sets is injective modulo isometry, so any periodic crystal is determined by the geometry of its atomic centers without chemical types. Replacing one atom with a different one should perturb distances to atom neighbors.

Hence all known and undiscovered crystals live in one Crystal Isometry Space (CRIS) parametrized by complete isometry invariants. The case of finite atomic clouds is solved in [3].

New area of **Geometric Data Science** for mapping crystals and proteins

The vision is to map (continuously parametrize) the space of any data objects considered up to practical equivalences. While Geometric Deep Learning experimentally tried to find equivariant descriptors of point clouds and graphs, generically complete and continuous invariants were developed for finite and periodic sets of unordered points in any \mathbb{R}^n, see the papers in NeurIPS 2022 and CVPR 2023, see http://kurlin.org/research-papers.php#Geometric-Data-Science.

The key obstacle for periodic crystals was the ambiguity of conventional data based on minimal or reduced cells that are discontinuous under atomic displacements. Without continuously quantifying the crystal similarity, the brute-force Crystal Structure Prediction produces millions of nearly identical approximations to numerous local energy minima, see red peaks in Fig. 1.

![Figure 1](image.png)

Figure 1: **Left:** energy landscapes show crystals as isolated peaks of height $= -\text{energy}$. To see beyond the ‘fog’, we need a map parametrized by invariant coordinates with a continuous metric. **Right:** R. Feynman’s first lecture showed that 7 cubic crystals differ by side lengths, while our invariants distinguished all 660K+ periodic crystals in the CSD. These crystals have unique positions in a common *Crystal Isometry Space* whose simplest 2D projection is in Fig. 2.

PDD and its stronger versions can be considered a DNA-style code or materials genome parametrizing a geographic-style map of the crystal space like a star map of the universe, where any known and not yet discovered crystal is uniquely identified by its meaningful coordinates.

![Figure 2](image.png)

Figure 2: The continuous map of all periodic crystals in the Cambridge Structural Database. The color indicates the number of crystals whose two simplest invariants (density and the average minimum distance AMD_1 between nearest atoms) have values in any fixed pixel.

The crystal space can be visualized in other explicit coordinates from AMD vectors and PDD matrices. The density of S has been extracted from the asymptotic of $\text{PDD}(S; k)$ as $k \to +\infty$.