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We analyse the numbers of closed paths of length k ∈ N on two important regular lattices: the hexagonal
lattice (also called graphene in chemistry) and its dual triangular lattice. These numbers form a moment
sequence of specific random variables connected to the distance of a position of a planar random flight (in
three steps) to the origin. Here, we call such an random variable a random eigenvalue of the underlying
lattice. Explicit formulae for the probability density and characteristic functions of these random eigenvalues
are given for both the hexagonal and the triangular lattice. Furthermore, it is proven that both probability
distributions can be approximated by a functional of the random variable uniformly distributed on increasing
intervals [0, b] as b → ∞. This yields a simple way to simulate these random eigenvalues without generating
graphene and triangular lattice graphs. To show that approximation, we first prove an interesting integral
identity for a specific series containing the third powers of the modified Bessel functions In of nth order, n ∈ Z.
Such series play a crucial role in many contexts, in particular, in analysis, combinatorics and theoretical
physics.
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