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History

Until the mid-1990’s, all native protein structures were assumed to
be topologically simple.

In 1994, the biochemist Marc Mansfield postulated that knotted
proteins could not exist.

Erica Flapan, Helen Wong, Alireza Mashaghi A tile model of entangled proteins



A Protein Knot

In 1995, Liang and Mislow identified the first knotted protein by
including disulfide bonds and copper atoms in addition to the
backbone.

Ascorbate acidase

from zucchini

Cu

Cu

Cu

Currently, there are over 200,000 proteins with experimentally
solved 3D structures and 1,612 of them have knotted backbones.

Using machine learning techniques, the recent databases AlphaFold
and ESMFold predicted 3D structures for hundreds of millions of
proteins.

This includes 700K proteins whose backbone contains complex
knots that had not been previously predicted.
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Knotted backbones

Some knotted protein chains (without red arcs) that have been
solved or predicted:

twist knotcomposite knot 83613  # 31 1
knot63 knot

Most knotted proteins aren’t circular, but the energy required to
unthread them is large.

To identify the type of knot, we need to join the ends to create a
closed loop.

We extend the ends to ∞ in hundreds of directions and choose the
knot type occurring most frequently.

For example, we don’t choose to connect the ends like this:

= =
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Do protein knots serve a purpose?

It is not known whether knots serve a purpose or are just a random
occurrence that’s been preserved by evolution.

Analogously, it is not known whether human earlobes serve a
purpose or are just a random occurrence that’s been preserved by
evolution.

If knots were a random occurrence, we wouldn’t expect the same
protein to be knotted in distinct organisms.

However:

• Carbonic anhydrase containing the 31 knot is found in
humans, bacteria, and algae.

• Class II ketol-acid reductoisomerase containing the 41 knot is
found in e.coli and spinach.

• Ubiquitin hydrolase containing the 52 knot is found in humans
and yeast.
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Understanding protein knots is important for medicine

Good knots
Parkinson’s disease seems to be caused by the degradation of
ubiquitin hydrolase as it passes through a narrow pore of a
proteosome and unfolds.

The 52 knot, which is normally in ubiquitin hydrolase, might make
it difficult for it to thread through the pore which leads to
degradation.

Bad knots
Protein entanglement can cause misfolding diseases including
Alzheimer’s, oculopharyngeal muscular dystrophy, and certain
cancers.

Some members of the SPOUT family of proteins containing a deep
trefoil knot are known to cause genetic diseases.
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Complex entanglement

Knotting is not the only type of entanglement that can occur in
proteins.

A slipknot occurs when a chain is unknotted but it has a knotted
subchain.

Knotted lasso
Cysteine motif Cyclotide 

θ-graph 

slipknot

Lassos have been characterized in terms of how many times they
pierce a minimal surface bounded by the loop.

But this doesn’t detect knots and other complex entanglements of
the tail(s) or loop of the lasso.
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Lassos

Lassos

This classification doesn’t distinguish more complex lassos.

Also, topologically, these lassos can be undone even while pinning
down endpoints, which doesn’t occur due to molecular forces.

We want a model of entanglement that includes intertwined sites
held together by molecular forces and entanglement with
intra-chain bonds.
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Circuit Topology Model

Alireza Mashaghi introduced Circuit Topology in which intra-chain
bonds (known as hard contacts) and locally entangled units
(known as soft contacts) are put together with operations to
create complex entangled protein structures.

hard contacts soft contact

held together by

molecular forces

Mashaghi found that folding kinetics of polymer chains were
correlated with the number and position of hard contacts.

Soft contacts and their operations were not rigorously described.

This is what we are interested in here.
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Outline of talk

hard contacts soft contact

held together by

molecular forces

• We model soft contacts and their operations as specific
1-string and 2-string tangles called tiles, based on entangled
pieces observed by Mashaghi.

• We treat our tiles as rigid because the local entanglement is
held together by molecular forces.

• We join tiles together with operations based on the operations
for hard contacts developed by Mashaghi.

• We characterize all knots that can be obtained using our tiles
and operations.
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Basic tiles

A tile is a 1-string or 2-string tangle projected onto a rectangle
with compass points NW, SW, SE, and NE indicated or implied.

NW

SW SE

NE

We start with two 1-string and three 2-string tiles based on
entanglements of biopolymers, with compass points implied.

α contains a trefoil knot 31, β contains a figure eight knot 41, and
the other three basic tiles δ, ε, and γ contain hooks.

δ ε γα β

Basic tiles:

We obtain more tiles by rotating these five basic tiles around long
(horizontal) axis x , short (vertical) axis y , and central axis z ; and
by reflecting tiles across xy -plane, xz-plane, and yz-plane.
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Eight 1-string tiles

• Ax is the result of rotating by 180◦ around (horizontal) x-axis.
• Ay is the result of rotating by 180◦ around (vertical) y -axis.
• Az is the result of rotating by 180◦ around (central) z-axis.
• A∗ is the result of a reflection across xy -plane.
• Ah is the result of a horizontal reflection across xz-plane.
• Av is the result of a vertical reflection across yz-plane.
• A∗

z is the inversion obtained by reflecting Az across xy -plane.

1 2
3 4

1 2
3 4

Ax
12
34

Ay

12
34

Az
12
34

Av

1 2
3 4

A
1 2
3 4Ah

1 2
3 4

A*

12
34 zA*

x

y

We obtain the following eight 1-string tiles by rotating and
reflecting α and β.

β   = β*

α  = α α  = α

β  = β β  = β

α = α

β  z      v x h y

 z    v h x yα*=  z   α*

=  z   β*

This gives us all non-trivial tiles which have shadows on the right.
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Eight 2-string tiles

• Ax is the result of rotating by 180◦ around (horizontal) x-axis.

• Ay is the result of rotating by 180◦ around (vertical) y -axis.

• Az is the result of rotating by 180◦ around (central) z-axis.

• A∗ is the result of a reflection across xy -plane.

• Ah is the result of a horizontal reflection across xz-plane.

• Av is the result of a vertical reflection across yz-plane.

• A∗
z is the inversion obtained by reflecting Az across xy -plane.

We obtain the following eight 2-string tiles by rotating and
reflecting δ, ε, and γ.

ε = ε  = ε  = ε γ=γ  =γ  =γ 

δ=δ δ  =δ*

 ε  =ε  =ε*= γ  =γ  =γ*=γ* 

δ  =δx y z h v

 x    y z v h x y z v h

δ  =δ*z

ε*z z

This gives us all non-trivial tiles with shadow on the right.
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Three basic tile complexes

We introduce operations to combine any of these 16 tiles to get an
entangled arc called a tile complex with all crossings inside the tiles
and ends of the complex in the same region of plane.

A 1-string tile is already an arc, and hence is already a tile complex.

We don’t specify over and under crossings so the drawing can
represent any 1-string tile.

The closure operation A joins the NE and NW endpoints of a
2-string tile A to make it into a tile complex.

A
A

The closure of 

a 2-string tile

If we join the NE and SE (or NW and SW) endpoints we don’t get
a single arc.
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Three basic tile complexes

The cross operation joins 2-string tiles A and B with three arcs to
make them into a tile complex A× B.

A

B

A×Β

Now in addition to the 16 basic tiles we have three basic tile
complexes.

Note, there are other ways we could define this but they give
equivalent tile complexes.

A
A

The closure of 

a 2-string tile1-string tile A

B

A×Β

cross
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Next we combine tile complexes with two operations

The series operation denoted S + T strings together tile complexes
S and T . Note that S + T is not the same as T + S .

AC

C+A

A

(B×C)+AB

C

The parallel operation denoted S ‖ T inserts a tile complex T into
an arc of a tile complex S which is outside of a tile but not part of
a terminal arc. Inserting a tile complex into a terminal arc is series.

A

B

 A ǁ B

A

(B×C) ǁ  A

B

C

tEW

t

m

b

We use subscripts for top (t), middle (m), or bottom (b) when
inserting into ×, and West (W) or East (E) when inserting into ‖.
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A complicated example

A

B

 C ǁ F 

D

C

G

F

A × Β
D + G

Starting with A× B, we add C ‖ F on the right end, and insert
D + G into the bottom string to get the following.

A

B

 ((A × Β) ǁ  (D + G)) + (C ǁ F) 
b

D

C

G

F
 (A x B) + (C ǁ F) 

A

B C

F

All tile complexes are obtained by combining the three basic tile
complexes using series (which strings them together) and parallel
(which inserts one into an interior arc of another).
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Making tile complexes into knots

Since all crossings are within tiles and we are treating tiles as rigid,
the tangling of a tile complex is trapped.

We join the endpoints of a tile complex the plane to determine the
knots we get up to isotopy.

If we join endpoints in space we could introduce tangling outside of
the tiles. So we don’t do this.

A

B

A

B

A

B

bad
good

The sealing K (T ) of a tile complex T is the knot obtained by
joining the endpoints in the plane without adding new crossings.

Our operations leave the endpoints of a tile complex in the same
region of the plane, so there is a unique way to join them.
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Sealing tile complexes

B

A

C

 K(A ǁ (B ǁ C)) 
B

 K((A ǁ C) ǁ   B)

A

C

W 

as knots
=

As knots, these are equal because in K ((A ‖ C ) ‖W B) we can
slide C along an arc of B to the top of B.

But, as tile complexes (A ‖ C ) ‖W B and A ‖ (B ‖ C ) are not
equivalent, since no isotopy of the plane treating each tile as rigid,
takes one to the other.

We consider sealings of tile complexes up to isotopy of space to
determine all knot types we can get from our model.

Note this does not preserve the tile operations as we see above.
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Connected sums

A knot is a connected sum J#K if a plane can split it into
non-trivial knots J and K .

A

J

K

J # K

This knot can be split into three non-trivial knots.

Examples of sealings of tile complexes which are connected sums:

AC

K(C+A) = K(C) # K(A) 

A

B
 K(A ǁ B) =K(A) # K(B)

Sealing of series (i.e., stringing 

two tile complexes together) 

Sealing of parallel (i.e., inserting

one tile complex into another)
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Sealings and operations

In fact, sealing of series (i.e., stringing two tile complexes together)
or parallel (i..e., inserting one tile complex into another) always
produces a connected sum.

Lemma

The sealing of a tile complex with at least two tiles is a connected
sum where each summand is the sealing of one of the three basic
tile complexes.

To determine the knots we can obtain with tiles we only need to
know what knots the sealings of the three basic tile complexes are.

Basic tile complexes:

A
A

The closure of 

a 2-string tile1-string tile A

B

A×Β

cross
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Sealings of 1-string tiles

Recall basic tile complexes are: Eight 1-string tiles, closure of eight
2-string tiles, and the cross of two of the eight 2-string tiles.

Below we determine all sealings of basic tile complexes.

1-string Lemma

The sealing of a 1-string tile is one of the knots ±31 or 41.

31

41
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Sealings of closure of 2-string tiles

2-string Lemma

If B is a 2-string tile, then K (B) is the trivial knot 01 or one of the
knots ±31 or 41.

0
1

31 31
41 41

It’s harder to determine all sealings of the cross of two 2-string
tiles because there are 64 combinations of the eight 2-string tiles,
so first we prove a technical lemma.
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Applying the Technical Lemma

Technical Lemma

Let A and B be 2-string tiles.

1 Either A = Az or there is an isotopy of space taking A to Az

fixing the endpoints of the arcs.

2 The only 2-string tiles, up to an isotopy in space fixing the
endpoints of the arcs, are: δ, δ∗, ε, ε∗, γ, γ∗

3 K (A× B) = K (B × A).

4 (A× B)∗ = A∗ × B∗.

Proof of 1 and 2) Up to isotopy of space fixing the endpoints,
there are six 2-string tile projections.

ε=ε =ε =ε γ=γ  =γ  =γ 

δ=δ δ*= δ  

 ε*=ε  =ε  =ε* γ*=γ  =γ  =γ* 

δ  =δx y z h v

 x    y z vh x y z vh

isotopic isotopic
δ  =δ*z

z z
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Knot sealings of the cross of 2-string tiles

Proof of 3) K (A× B) = K (B × A).

rotate by

180˚

A

B

1

23

4

1

23

4

b

b

b

b
a

a

a

a

z

z

By Part (1), B   is isotopic or equal 

to B and A   is isotopic or equal to A 

both fixing the endpoints of the arcs. 

So K(B   × A  )=K(B × Α)

z
z

A

B
1

2 3

4

1

2 3

4

b

b

b

b
a

a

a

a

K(A × B)

Relabel tiles

A

B
1

23

4

1

23

4

b

b

b

b
a

a

a

a

z zK(B  ×A  )zz

Proof of 4) (A× B)∗ = A∗ × B∗

Switching all of the crossings of A and B is the same as switching
all of the crossings of A× B. �
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Sealings of the cross of 2-string tiles

Technical Lemma

Let A and B be 2-string tiles.

1 Either A = Az or there is an isotopy of space taking A to Az

fixing the endpoints of the arcs

2 The only 2-string tiles, up to an isotopy in space fixing the
endpoints of the arcs, are: δ, δ∗, ε, ε∗, γ, γ∗.

3 K (A× B) = K (B × A).

4 (A× B)∗ = A∗ × B∗.

We don’t compute mirror image knots. So by (2), (3), and (4), we
only compute 12 knot types of K (A× B) where A is δ, ε, or γ.

K (δ × δ), K (δ × δ∗), K (δ × ε), K (δ × ε∗),K (δ × γ), K (δ × γ∗)

K (ε× ε), K (ε× ε∗), K (ε× γ), K (ε× γ∗)

K (γ × γ), K (γ × γ∗)
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Knot types of K (A× B)

ε=ε =ε =ε γ=γ  =γ  =γ 

δ=δ δ*= δ  

 ε*=ε  =ε  =ε* γ*=γ  =γ  =γ* 

δ  =δx y z h v

 x    y z vh x y z vh

isotopic isotopic
δ  =δ*z

z z

The table below lists the 12 knots obtained as K (A× B), which
we determined by hand.

cross of 2-string tiles knot type cross of 2-string tiles knot type

K (δ × δ) +31 K (δ × δ∗) 41
K (δ × ε) +52 K (δ × ε∗) 01
K (δ × γ) 61 K (δ × γ∗) 01
K (ε× ε) 51 K (ε× ε∗) 63
K (ε× γ) 62 K (ε× γ∗) 61
K (γ × γ) 77 K (γ × γ∗) 812
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Summary

Lemma

If A is a 1-string tile, then K (A) is 31 or 41 or their mirror images.

Lemma

If B is a 2-string tile, then K (B) is 01, 31, or 41.

Lemma

If A and B are 2-string tiles, then K (A× B) is 01, 31, 41, 51, 52,
61, 63, 77, 812.

Theorem

The sealing of any tile complex is a connected sum of 01, 31, 41,
51, 52, 61, 63, 77, 812.

Until recent predictions by machine learning program AlphaFold,
the above list included all known protein knots.
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Sequence Notation

Above we wrote symbolic expressions to describe how knotted
chain can be constructed using tiles and operations.

Example: (A ‖ C ) ‖W B, describes how to construct a knotted
chain starting with particular 2-string tiles A, B, and C .

However, we would also like to start with a projection of a knotted
chain and write it as a tile complex to see how to construct it with
tiles and operations.

Example: Can the following be constructed as a tile complex?

B

A

C

D
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Sequence Notation

B

A

C

D

As a first step, we introduce Sequence notation (based on
Dowker–Thistlethwaite notation for knots) which is read off from a
tangled arc projection going from the W endpoint to the E
endpoint.

The above projection has sequence notation ABCDCBAD.

Note that just because it can be written as a sequence of tiles does
not mean it can be constructed using our operations.
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Sequence Notation

These are equivalent tiles complexes (because their projections are
the same), and have sequence notation ABBCCA, but their
operation notations and their constructions are distinct.

B

A
 (A ǁ C) ǁ  B

B

A

C

C

w  (A ǁ B) ǁ  CE

A

B C

 A ǁ (B + C)

Rules for a sequence to represent a tile complex

1 Each letter either appears once and represents a 1-string tile
or appears twice and represents a 2-string tile.

2 At most one letter can alternate with a given letter.

Erica Flapan, Helen Wong, Alireza Mashaghi A tile model of entangled proteins



Rules for sequences

Rule 2) At most one letter can alternate with a given letter.

B

A

C

D

ABCDCBAD violates Rule 2 since A, B, and C all alternate with
D. This sequence does not represent a tile complex.

Theorem

Any sequence which satisfies Rules 1 and 2 represents a tile
complex.

We prove this theorem below by describing an algorithm going
from a sequence satisfying Rules 1 and 2 to a tile complex.
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Preliminaries

Definition

A letter appearing only once in a sequence is called a singleton,
two consecutive instances of the same letter such as AA are twins,
and adjacent alternating letters such as ABAB is an interweaving.

Example: ABADDBCC has two pairs of twins, but no singleton.
It has no interweaving, though A and B alternate.

Lemma

Any sequence with no singletons which satisfies Rules 1 and 2
must either have a pair of twins or an interweaving.

We don’t prove this here, but use it to define an algorithm to go
from a sequence satisfying Rules 1 and 2 to a picture of a tile
complex together with its operation notation.

Erica Flapan, Helen Wong, Alireza Mashaghi A tile model of entangled proteins



Algorithm together with example ABADDEBCFC

Step 0. Let S0 denote a sequence satisfying Rules 1 and 2.
Example: S0 = ABADDEBCFC . We check it satisfies the Rules.

1 Each letter either appears once and represents a 1-string tile
or appears twice and represents a 2-string tile. E and F are
the only letters that appear just once.

2 At most one letter alternates with a given letter.

Step 1. Let S1 denote the sequence obtained by deleting all of the
singletons from S0. If S0 has no singletons, then let S1 = S0.
We delete the singletons E and F from S0 to obtain
S1 = ABADDBCC .

Step 2. If S1 = ∅ (i.e., all letters of S0 were singletons), then go
to Step 9. Otherwise, S1 6= ∅ and has no singletons. So by
Lemma, either S1 has a pair of twins or an interweaving.
S1 contains twins DD and CC , but no interweavings.
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Algorithm together with example ABADDEBCFC

Step 3. If S2 = ∅, then go to Step 5. Otherwise, by Lemma, S1
either has a pair of twins or an interweaving. S2 is obtained by
deleting the twins and interweavings from S1.
We delete twins DD and CC from S1 = ABADDBCC to get
S2 = ABAB.

Step 4. Repeat Step 3 until for some n, we have Sn = ∅.
We delete ABAB from S2 to get S3 = ∅.

Step 5. If S1 = ∅, we skipped to Step 9. Thus Sn−1 6= S0 and
hence Sn−1 contains no singletons. Represent Sn−1 as a line
segment with markings for twins and interweavings in the order
they occur in Sn−1.

Sn−1 = S2 = ABAB

ABAB
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Algorithm together with example ABADDEBCFC

Step 6. Replace markings for twins and interweavings by pictures
to get a tile complex with sequence Si , where i = n − 1.

ABAB

 Step 4: S  = ∅

A

B

Operation notation for S  is A × Β

Step 6: S  = ABAB        23

Step 5:

2

S  = ABAB        2

Operation notation for Si : Because Si is obtained by inserting
twins and interweavings into a line segment, Si is the series
operation with summands of the form C or A× B.

Step 7. If i = 1, go to Step 8. Otherwise, insert twins and
interweavings from the sequence Si−1 into the tile complex for Si
to get a tile complex for Si−1.

A

B

Step 7:  S  = ABADDBCC

Insert DD and CC  

D C

1

A

B
Step 6: S  = ABAB        2
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Algorithm together with example ABADDEBCFC

A

B

Step 7:  S  = ABADDBCC

Insert DD and CC  

D C

1

A

B
Step 6: S  = ABAB        2

Note that the position of the DD in the sequence tells us where to
insert D.

The following is incorrect:

A

B

ABDDABCC  

D
C

This is   
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Algorithm together with example ABADDEBCFC

Operation notation for Si−1: Starting with the operation
notation for Si , we use series and parallel to insert twins and
interweavings into the notation according to the picture.

Operation notation for S2 = ABAB is A× B. So from the picture
we see that operation notation for S1 = ABADDBCC is
(A× B) ‖b D) + C .

A

B

Step 7:  S  = ABADDBCC  

D C

Operation notation:  ((A × Β)ǁ  D) + C 

1

A

B

Step 6: S  = ABAB        2

Operation notation: A × Β
b
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Algorithm together with example ABADDEBCFC

Step 8. Repeat Step 7, for each i < n − 1 until we get a tile
complex for S1.

In our example, we have a tile complex for S1 after Step 7, so we
skip Step 8.

Step 9. Insert any 1-string tiles that were singletons in S0.

A

B

D

C

E

F

A

B

Step 7:  S  = ABADDBCC  

b

D
C

Operation notation:  ((A × Β) ǁ   D) + C 

1

Operation notation: ((A × Β) ǁ  (D + E)) + (C ǁ F) 
b

Step 9:  S  = ABADDEBCFC  
0

Operation notation for S0: Use series and parallel to add 1-string
tiles to the operation notation for S1 to get operation notation for
S0.
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Comparing notations

Operation notation: ((A × Β) ǁ  (D + E)) + (C ǁ F) b

Sequence notation:  S  = ABADDEBCFC  

A

B

D

C

E

F
0

We use operation notation to describe how a tile complex is
constructed.

We use sequence notation to describe a projection made up of tiles.

Given only a sequence which satisfies Rules 1 and 2, we use our
algorithm to obtain a projection of a tile complex and its operation
notation.
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Intra-chain bonds in our model

In order to include intra-chain bonds in our tile model we introduce
H-joints.

H-joint

Since a protein chain can have some flexibility around intra-chain
bonds, we allow the black edges to rotate around the red arc.

Thus an H-joint is not a rigid tile.

We can now build entangled graphs by using our operations to
combine tiles and H-joints, and use our notations to represent
them.
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Example

A

b

D

C

Operation notation:  ((A × Η) ǁ   D) + C 

Η

A

Η

Operation notation:  A × Η

Sequence notation:  AHAH 

Sequence notation:   AHADDHCC
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Thanks

T
H

A
N
K

Y
O

U
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