Topological Data Analysis theory, applications and the future

Vitaliy Kurlin, http://kurlin.org Materials Innovation Factory (MIF) and Computer Science, University of Liverpool

TDA = topological data analysis

quantifies *persistent topological structures* analysing unorganised data *across all scales*.

Goal: also use *machine learning* and *statistics*. Carlsson, Topology and Data, Bulletin AMS 2009.

What are data in TDA?

Input: a cloud of points with pairwise distances

without any scale, # neighbours, noise bound.

2D cloud: edge pixels in an image, a noisy scan.

High-dim cloud: a vector of features, histogram.

Life story of a cloud: scale $\alpha = 0$

Blue cloud: unstructured set of points

- • **Question**: how many holes?
- • Answer: not clear at scale 0

• • Idea: study it at all scales

Life story of a cloud: scale $\alpha \approx 1.1$

scale := radius of disks

offset := union of disks

no holes are born yet

イロト イポト イヨト イヨト

offsets are evolving if the scale is increasing

Life story of a cloud: scale $\alpha = 1.5$

First hole is born

at scale = 1.5

continue ...

1 hole ≈1.1 now=1.5

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Life story of a cloud: scale $\alpha = 2$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Life story of a cloud: scale $\alpha \approx 2.6$

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

From a cloud C to a filtration

Def : the α -offset of a cloud *C* in a space *M* is the union of balls $C^{\alpha} = \bigcup_{p \in C} B(p; \alpha)$ of a radius α .

Key idea: topology evolution When α (discrete or continuous) is increasing, we study how the topology of C^{α} changes: components in 0D, cycles in 1D, surfaces in 2D.

Single edge clustering

A manual choice of the scale α is needed: all points with $d(p, q) \leq 2\alpha$ are in one cluster.

If α is increasing, clusters merge. Choose α ?

persistent components

0D homology = con. components

Choosing a scale α might not be possible for high-dimensional data, hard to visualise.

persistent components

Persistent components of C^{α} living over a long interval of α are more *natural clusters* of *C*.

Red dots form a *persistence diagram* in 0D, so **TDA extends** clustering to *high-dim structures*.

(0,0)(1,0)(2,1)(2,3)(0,5)

(0,0) (1,0) cloud C 5 clusters

▶ ★ 臣 ▶ 二 臣

1D homology = holes in 2D shapes

A *hole* is a bounded component of $\mathbb{R}^2 - C^{\alpha}$ enclosed by a 1D cycle represented in $H_1(C^{\alpha})$.

 $C^{1.5}$ has 1 hole, C^2 has 2 holes, C^3 has 0 holes.

- 3

ヘロト ヘポト ヘヨト ヘヨト

Life spans of holes in 2D shapes

A hole is *born* at a scale α = birth and *dies* later at α = death, so has a *life span* [birth, death].

A hole is born at 1.5, splits at 2, dies at \approx 2.6.

・ロン ・四 と ・ ヨ と

Homology and its instability

Homology $H_k(S)$ counts k-dimensional holes: a

vector space of combinations of simplices of S.

 $H_k(S)$ is unstable under perturbations of data.

 $f: X \to Y$ induces linear $f_k: H_k(X) \to H_k(Y)$, e.g. long cycle above \to sum of 2 short cycles.

Persistent homology of data Any filtration $S(\alpha_1) \subset S(\alpha_2) \subset \cdots \subset S(\alpha_m)$ of complexes induces linear maps in homology: $H_k(S(\alpha_1)) \to H_k(S(\alpha_2)) \to \cdots \to H_k(S(\alpha_m)),$ which splits as a sum of basic sequences over \mathbb{Z}_2 from α_i to α_i , i.e. $0 \to \mathbb{Z}_2 \xrightarrow{id} \cdots \xrightarrow{id} \mathbb{Z}_2 \to 0$

by a classification of finitely generated modules.

The evolution of homology *across all scales* is summarised by bars $[\alpha_i, \alpha_j)$ that form a barcode.

Output of TDA: all life spans

The evolution of all holes is summarised by

bars [birth, death) in the barcode or by

dots (birth, death) in the persistence diagram.

Stability of persistence

Th (Cohen-Steiner, Edelsbrunner, Harer, 2007)

If a data cloud *C* is *perturbed by* ε (in the ε -offset C^{ε}), the persistence diagram is *perturbed by* ε , namely there is an ε -matching of all dots in PDs.

Guessing holes from a sample Dots with a *high persistence* \leftrightarrow 'true' holes. Red dots near the diagonal \leftrightarrow 'noisy' holes.

How many holes does the sampled graph have?

Counting holes in noisy clouds $O(n \log n)$ algorithm, theoretical guarantees in VK. CVPR'14: Computer Vision & Pattern Recognition death birth

Where are these holes? No structure on data yet.

Computer Graphics application

Problem: complete all closed contours or paint

all regions that they enclose (a segmentation).

A user drawing a sketch on a tablet might be happy with our fast automatic 'best guess': *make contours closed* so that I can paint areas (a scale is easy to find, but we can't ask for it).

Input & output of auto-completion

Required output: most 'persistent' contours.

Counting holes in *C* **may be easy**

The graph *G* has H_1 of rank 36, hence any ε -sample *C* of *G* will probably have 36 holes.

How can we see that there are 36 holes in C?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Using stability of persistence

We can find the *widest diagonal gap* separating 36 points from the rest of persistence diagram.

An initial segmentation of *C* Acute Delaunay triangle is a 'center of gravity'.

We attach all adjacent non-acute triangles to get an initial segmentation on the right hand side.

Harder than counting cycles Initial regions \leftrightarrow red dots in PD (too many).

We should merge 36 regions of high persistence with all remaining regions of lower persistence.

Merging initial regions

Building $PD\{C^{\alpha}\}$, we keep adjacency relations of merged regions to enrich persistence info.

Hierarchy of segmentations

A user can prefer to get exactly *m* regions by choosing 2nd widest diagonal gap in PD1 etc.

• • • • • • • •

Radii and thickness of a graph

A contour $L \subset \mathbb{R}^2$ has $\rho(L) = \min \alpha$ when $L^{\alpha} \sim \cdot$

A graph $G \subset \mathbb{R}^2$ has $\theta(G) = \min \rho(L_i)$ over the contours enclosing all newborn holes in G^{α} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theoretical guarantees

Th (VK) : if *C* is an ε -sample of a graph $G \subset \mathbb{R}^2$ whose basic cycles have radii $\rho_1 \leq \cdots \leq \rho_m$ and $\rho_1 > 7\varepsilon + \theta(G) + \max\{\rho_{i+1} - \rho_i\}$, the output segmentation has *m* contours 2ε -close to *G*. Pattern Recognition Letters, 2016, v. 83, p. 3-12.

- * ロ > * @ > * 注 > * 注 > 注 の < @

TDA for learning a shape of data

Example questions for a point cloud *C*: does it look like a circle, graph, higher-dim manifold?

Many skeletonisation algorithms are *iterative*, use *parameters* (scale or weights of criteria).

Key idea: analyse the data across all scales.

TDA provides a *quick and simple approximation* to data, e.g. a 1-dimensional skeleton whose parameters can be *refined by optimisation*.

Parameterless skeletonisation

Homologically Persistent Skeleton HoPeS(C) is

the first universal structure on a cloud C that

optimally captures all 1D persistence on C.

$HoPeS(C) = MST(C) \cup critical edges$

Def: each critical edge gives birth to a class for birth $\leq \alpha < \text{death}$ in 1D persistence of $\{C^{\alpha}\}$.

HoPeS(C) is a *rotation-and-scale invariant* structure on *C*, encodes all 1D persistence.

Optimality of HoPeS(C; α)

Th (VK'15). HoPeS(C; α) for any scale α has the *minimum length* among all graphs $G \subset C^{\alpha}$ with the same homology H_0 , H_1 as C^{α} , so HoPeS(C) 'captures' homology of the cloud C at all scales.

Graph reconstruction problem

Shop barcodes are not readable by humans.

We can make *visual markers* like Egyptian hieroglyphs readable by *humans and robots*.

VK, CAIP'15: Computer Analysis of Images and Patterns.

Global stability of HoPeS'(C)

Cor (VK): derived skeleton HoPeS'(C) stays in a small offset under perturbations of a cloud *C*.

HoPeS(C) is extended to any finite metric space C and to any filtration of complexes on C.

SGP 2015, Computer Graphics Forum 34-5.

Limitations: $G \subset \mathbb{R}^2$ must have $PD_1{G^{\alpha}}$ with a wide diagonal gap, not for trees like *T* and *C*.

Next: better results by a deeper analysis of PD_1 .

Another challenging example

The (noisy version of a) true cycle of *G* has a lower persistence than a fake cycle in $PD_1\{C^{\alpha}\}$, but the optimal pipe separates the correct dot.

The reconstructed graph has a correct cycle.

< □ > < □ > < □ > < □ >

Computing and using persistence

 $\textbf{Cloud} \rightarrow \textbf{filtration of complexes} \rightarrow \textbf{persistence}$

Obstacle: a big number of simplices $u = O(n^k)$ in dimension *k* for *n* points in a given cloud *C*.

Faster: a near linear time in dimension k = 0, approximate persistence u = O(n) for k > 0.

Pipeline: t-SNE reduces dimension to $m \approx 4$ preserving geometry, TDA approximates a 1D skeleton for a further optimisation/visualisation.

Summary: TDA needs Statistics

- TDA quantifies geometric properties of *topological features* (cycles, holes, voids)
- the persistence diagram is stable under any bounded noise in unorganised data
- HoPeS(C) is a 1D persistent structure giving a provably correct reconstruction of a graph

Wanted : *statistics expertise* and open minds including PhDs and postdocs with C++ skills.