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TDA = topological data analysis
quantifies persistent topological structures
analysing unorganised data across all scales.

Goal: also use machine learning and statistics.
Carlsson, Topology and Data, Bulletin AMS 2009.



What are data in TDA?
Input: a cloud of points with pairwise distances

without any scale, # neighbours, noise bound.

2D cloud: edge pixels in an image, a noisy scan.

High-dim cloud: a vector of features, histogram.



Life story of a cloud: scale α = 0



Life story of a cloud: scale α ≈ 1.1



Life story of a cloud: scale α = 1.5



Life story of a cloud: scale α = 2



Life story of a cloud: scale α ≈ 2.6



From a cloud C to a filtration
Def : the α-offset of a cloud C in a space M is
the union of balls Cα =

⋃
p∈C

B(p;α) of a radius α.

Filtration C0 ⊂ · · · ⊂ Cα ⊂ . . . in a metric space.



Key idea: topology evolution
When α (discrete or continuous) is increasing,

we study how the topology of Cα changes:

components in 0D, cycles in 1D, surfaces in 2D.



Single edge clustering

A manual choice of the scale α is needed:

all points with d(p,q) ≤ 2α are in one cluster.

If α is increasing, clusters merge. Choose α?



0D homology = con. components

Choosing a scale α might not be possible for
high-dimensional data, hard to visualise.

Persistent components of Cα living over a long
interval of α are more natural clusters of C.



Dendrogram of clustering
Each internal node is a cluster merged from 2 or
more smaller clusters at the children nodes.

Red dots form a persistence diagram in 0D, so
TDA extends clustering to high-dim structures.



1D homology = holes in 2D shapes
A hole is a bounded component of R2 − Cα

enclosed by a 1D cycle represented in H1(Cα).

C1.5 has 1 hole, C2 has 2 holes, C3 has 0 holes.



Life spans of holes in 2D shapes
A hole is born at a scale α = birth and dies later
at α = death, so has a life span [birth, death).

A hole is born at 1.5, splits at 2, dies at ≈ 2.6.



Homology and its instability
Homology Hk(S) counts k-dimensional holes: a
vector space of combinations of simplices of S.

Hk(S) is unstable under perturbations of data.

f : X → Y induces linear fk : Hk(X )→ Hk(Y ),
e.g. long cycle above→ sum of 2 short cycles.



Persistent homology of data
Any filtration S(α1) ⊂ S(α2) ⊂ · · · ⊂ S(αm) of

complexes induces linear maps in homology:

Hk(S(α1))→ Hk(S(α2))→ · · · → Hk(S(αm)),

which splits as a sum of basic sequences over
Z2 from αi to αj , i.e. 0→ Z2

id→ · · · id→ Z2 → 0

by a classification of finitely generated modules.

The evolution of homology across all scales is

summarised by bars [αi , αj) that form a barcode.



Output of TDA: all life spans
The evolution of all holes is summarised by

bars [birth, death) in the barcode or by

dots (birth, death) in the persistence diagram.



Stability of persistence
Th (Cohen-Steiner, Edelsbrunner, Harer, 2007)

If a data cloud C is perturbed by ε (in the ε-offset
Cε), the persistence diagram is perturbed by ε,
namely there is an ε-matching of all dots in PDs.



Guessing holes from a sample
Dots with a high persistence↔ ‘true’ holes.

Red dots near the diagonal↔ ‘noisy’ holes.

How many holes does the sampled graph have?



Counting holes in noisy clouds
O(n log n) algorithm, theoretical guarantees in

VK. CVPR’14: Computer Vision & Pattern Recognition

Where are these holes? No structure on data yet.



Computer Graphics application
Problem: complete all closed contours or paint
all regions that they enclose (a segmentation).

A user drawing a sketch on a tablet might be
happy with our fast automatic ‘best guess’:

make contours closed so that I can paint areas

(a scale is easy to find, but we can’t ask for it).



Input & output of auto-completion

Required output: most ‘persistent’ contours.



Counting holes in C may be easy

The graph G has H1 of rank 36, hence any
ε-sample C of G will probably have 36 holes.

How can we see that there are 36 holes in C?



Using stability of persistence

We can find the widest diagonal gap separating
36 points from the rest of persistence diagram.



An initial segmentation of C
Acute Delaunay triangle is a ‘center of gravity’.

We attach all adjacent non-acute triangles to get
an initial segmentation on the right hand side.



Harder than counting cycles
Initial regions↔ red dots in PD (too many).

We should merge 36 regions of high persistence
with all remaining regions of lower persistence.



Merging initial regions

Building PD{Cα}, we keep adjacency relations
of merged regions to enrich persistence info.



Hierarchy of segmentations
A user can prefer to get exactly m regions by
choosing 2nd widest diagonal gap in PD1 etc.



Radii and thickness of a graph
A contour L ⊂ R2 has ρ(L) = minα when Lα ∼ ·

A graph G ⊂ R2 has θ(G) = min ρ(Li) over the
contours enclosing all newborn holes in Gα.



Theoretical guarantees

Th (VK) : if C is an ε-sample of a graph G ⊂ R2

whose basic cycles have radii ρ1 ≤ · · · ≤ ρm and
ρ1 > 7ε+ θ(G) + max{ρi+1 − ρi}, the output
segmentation has m contours 2ε-close to G.

Pattern Recognition Letters, 2016, v. 83, p. 3-12.



TDA for learning a shape of data
Example questions for a point cloud C: does it
look like a circle, graph, higher-dim manifold?

Many skeletonisation algorithms are iterative,
use parameters (scale or weights of criteria).

Key idea: analyse the data across all scales.

TDA provides a quick and simple approximation
to data, e.g. a 1-dimensional skeleton whose
parameters can be refined by optimisation.



Parameterless skeletonisation
Homologically Persistent Skeleton HoPeS(C) is

the first universal structure on a cloud C that

optimally captures all 1D persistence on C.



HoPeS(C) = MST(C)∪ critical edges
Def: each critical edge gives birth to a class for
birth ≤ α < death in 1D persistence of {Cα}.

HoPeS(C) is a rotation-and-scale invariant
structure on C, encodes all 1D persistence.



Optimality of HoPeS(C;α)

Th (VK’15). HoPeS(C;α) for any scale α has the
minimum length among all graphs G ⊂ Cα with
the same homology H0,H1 as Cα, so HoPeS(C)

‘captures’ homology of the cloud C at all scales.



Graph reconstruction problem
Shop barcodes are not readable by humans.

We can make visual markers like Egyptian
hieroglyphs readable by humans and robots.

VK, CAIP’15: Computer Analysis of Images and Patterns.



Global stability of HoPeS′(C)

Cor (VK): derived skeleton HoPeS′(C) stays in

a small offset under perturbations of a cloud C.

HoPeS(C) is extended to any finite metric space
C and to any filtration of complexes on C.

SGP 2015, Computer Graphics Forum 34-5.

Limitations: G ⊂ R2 must have PD1{Gα} with a
wide diagonal gap, not for trees like T and C.

Next: better results by a deeper analysis of PD1.



Another challenging example
The (noisy version of a) true cycle of G has a
lower persistence than a fake cycle in PD1{Cα},
but the optimal pipe separates the correct dot.

The reconstructed graph has a correct cycle.



Computing and using persistence
Cloud→ filtration of complexes→ persistence

Obstacle: a big number of simplices u = O(nk)

in dimension k for n points in a given cloud C.

Faster: a near linear time in dimension k = 0,
approximate persistence u = O(n) for k > 0.

Pipeline: t-SNE reduces dimension to m ≈ 4
preserving geometry, TDA approximates a 1D
skeleton for a further optimisation/visualisation.



Summary: TDA needs Statistics

• TDA quantifies geometric properties of
topological features (cycles, holes, voids)

• the persistence diagram is stable under any
bounded noise in unorganised data

• HoPeS(C) is a 1D persistent structure giving
a provably correct reconstruction of a graph

Wanted : statistics expertise and open minds
including PhDs and postdocs with C++ skills.


