Topological Data Analysis
theory, applications and the future

Vitaliy Kurlin, http://kurlin.org
Materials Innovation Factory (MIF) and Computer Science, University of Liverpool
TDA = topological data analysis

quantifies *persistent topological structures*
analysing unorganised data *across all scales*.

Goal: also use *machine learning* and *statistics*.

What are data in TDA?

Input: a cloud of points with pairwise distances *without* any scale, # neighbours, noise bound.

2D cloud: edge pixels in an image, a noisy scan.

High-dim cloud: a vector of features, histogram.
Life story of a cloud: scale $\alpha = 0$

Blue cloud: unstructured set of points

- Question: how many holes?

- Answer: not clear at scale 0

- Idea: study it at all scales
Life story of a cloud: scale $\alpha \approx 1.1$

scale := radius of disks

offset := union of disks

no holes are born yet

offsets are evolving if the scale is increasing

0 now ≈ 1.1
Life story of a cloud: scale \(\alpha = 1.5 \)

First hole is *born*

at scale = 1.5

continue ...

0 \(\approx 1.1 \) 1 hole now=1.5
Life story of a cloud: scale $\alpha = 2$

Second hole is born when scale = 2 (radius of disks)
Life story of a cloud: scale $\alpha \approx 2.6$

Both holes *die* at scale ≈ 2.6

- $P(1 \text{ hole}) \approx 46.5\%$
- $P(2 \text{ holes}) \approx 53.5\%$

0 ≈ 1.1 1.5 2 now ≈ 2.6
From a cloud C to a filtration

Def: the α-offset of a cloud C in a space M is the union of balls $C^\alpha = \bigcup_{p \in C} B(p; \alpha)$ of a radius α.

Filtration $C^0 \subset \cdots \subset C^\alpha \subset \cdots$ in a metric space.
Key idea: topology evolution

When α (discrete or continuous) is increasing, we study how the topology of C^α changes: components in 0D, cycles in 1D, surfaces in 2D.
Single edge clustering

A manual choice of the scale α is needed: all points with $d(p, q) \leq 2\alpha$ are in one cluster.

If α is increasing, clusters merge. Choose α?
0D homology = con. components

Choosing a scale α might not be possible for high-dimensional data, hard to visualise.

Persistent components of C^α living over a long interval of α are more natural clusters of C.
Dendrogram of clustering

Each internal node is a cluster merged from 2 or more smaller clusters at the children nodes.

Red dots form a persistence diagram in 0D, so TDA extends clustering to high-dim structures.
1D homology = holes in 2D shapes

A *hole* is a bounded component of $\mathbb{R}^2 - C^\alpha$ enclosed by a 1D cycle represented in $H_1(C^\alpha)$.

$C^{1.5}$ has 1 hole, C^2 has 2 holes, C^3 has 0 holes.
Life spans of holes in 2D shapes

A hole is *born* at a scale $\alpha = \text{birth}$ and *dies* later at $\alpha = \text{death}$, so has a *life span* $[\text{birth}, \text{death})$.

A hole is born at 1.5, splits at 2, dies at ≈ 2.6.
Homology and its instability

Homology $H_k(S)$ counts k-dimensional holes: a vector space of combinations of simplices of S.

$H_k(S)$ is unstable under perturbations of data.

$f : X \rightarrow Y$ induces linear $f_k : H_k(X) \rightarrow H_k(Y)$, e.g. long cycle above \rightarrow sum of 2 short cycles.
Persistent homology of data

Any filtration $S(\alpha_1) \subset S(\alpha_2) \subset \cdots \subset S(\alpha_m)$ of complexes induces linear maps in homology:

$$H_k(S(\alpha_1)) \rightarrow H_k(S(\alpha_2)) \rightarrow \cdots \rightarrow H_k(S(\alpha_m)),$$

which splits as a sum of basic sequences over \mathbb{Z}_2 from α_i to α_j, i.e.

$$0 \rightarrow \mathbb{Z}_2 \xrightarrow{id} \cdots \xrightarrow{id} \mathbb{Z}_2 \rightarrow 0$$

by a classification of finitely generated modules.

The evolution of homology across all scales is summarised by bars $[\alpha_i, \alpha_j]$ that form a barcode.
Output of TDA: all life spans

The evolution of all holes is summarised by bars \([\text{birth}, \text{death})\) in the barcode or by dots \((\text{birth}, \text{death})\) in the persistence diagram.
Stability of persistence

Th (Cohen-Steiner, Edelsbrunner, Harer, 2007)

If a data cloud C is perturbed by ε (in the ε-offset C^ε), the persistence diagram is perturbed by ε, namely there is an ε-matching of all dots in PDs.
Guessing holes from a sample

Dots with a high persistence \leftrightarrow ‘true’ holes.

Red dots near the diagonal \leftrightarrow ‘noisy’ holes.

How many holes does the sampled graph have?
Counting holes in noisy clouds

$O(n \log n)$ algorithm, theoretical guarantees in
VK. CVPR'14: Computer Vision & Pattern Recognition

Where are these holes? No structure on data yet.
Computer Graphics application

Problem: complete all closed contours or paint all regions that they enclose (a segmentation).

A user drawing a sketch on a tablet might be happy with our fast automatic ‘best guess’: make contours closed so that I can paint areas (a scale is easy to find, but we can’t ask for it).
Input & output of auto-completion

Required output: most ‘persistent’ contours.
Counting holes in C may be easy

The graph G has H_1 of rank 36, hence any ε-sample C of G will probably have 36 holes.

How can we see that there are 36 holes in C?
Using stability of persistence

We can find the *widest diagonal gap* separating 36 points from the rest of persistence diagram.
An initial segmentation of C

Acute Delaunay triangle is a ‘center of gravity’.

We attach all adjacent non-acute triangles to get an initial segmentation on the right hand side.
Harder than counting cycles

Initial regions \leftrightarrow red dots in PD (too many).

We should merge 36 regions of high persistence with all remaining regions of lower persistence.
Merging initial regions

Building $\mathcal{PD}\{C^\alpha\}$, we keep adjacency relations of merged regions to enrich persistence info.
Hierarchy of segmentations

A user can prefer to get exactly m regions by choosing the 2nd widest diagonal gap in PD1 etc.
Radii and thickness of a graph

A contour $L \subset \mathbb{R}^2$ has $\rho(L) = \min \alpha$ when $L^\alpha \sim$.

A graph $G \subset \mathbb{R}^2$ has $\theta(G) = \min \rho(L_i)$ over the contours enclosing all newborn holes in G^α.
Theoretical guarantees

\textbf{Th (VK)}: if \(C \) is an \(\varepsilon \)-sample of a graph \(G \subset \mathbb{R}^2 \) whose basic cycles have radii \(\rho_1 \leq \cdots \leq \rho_m \) and \(\rho_1 > 7\varepsilon + \theta(G) + \max\{\rho_{i+1} - \rho_i\} \), the output segmentation has \(m \) contours \(2\varepsilon \)-close to \(G \).

TDA for learning a shape of data

Example questions for a point cloud C: does it look like a circle, graph, higher-dim manifold?

Many skeletonisation algorithms are iterative, use parameters (scale or weights of criteria).

Key idea: analyse the data across all scales.

TDA provides a quick and simple approximation to data, e.g. a 1-dimensional skeleton whose parameters can be refined by optimisation.
Parameterless skeletonisation

Homologically Persistent Skeleton $\text{HoPeS}(C)$ is the first *universal structure* on a cloud C that optimally captures all 1D persistence on C.

![Diagram](image)
HoPeS(C) = **MST**(C) ∪ critical edges

Def: each critical edge gives birth to a class for $\text{birth} \leq \alpha < \text{death}$ in 1D persistence of $\{C^\alpha\}$.

HoPeS(C) is a rotation-and-scale invariant structure on C, encodes all 1D persistence.
Optimality of $\text{HoPeS}(C; \alpha)$

\textbf{Th (VK'15).} $\text{HoPeS}(C; \alpha)$ for any scale α has the \textit{minimum length} among all graphs $G \subset C^\alpha$ with the same homology H_0, H_1 as C^α, so $\text{HoPeS}(C)$ ‘captures’ homology of the cloud C at all scales.
Graph reconstruction problem

Shop barcodes are not readable by humans.

We can make visual markers like Egyptian hieroglyphs readable by humans and robots.

VK, CAIP’15: Computer Analysis of Images and Patterns.
Global stability of $\text{HoPeS}'(C)$

Cor (VK): derived skeleton $\text{HoPeS}'(C)$ stays in a small offset under perturbations of a cloud C.

$\text{HoPeS}(C)$ is extended to any finite metric space C and to any filtration of complexes on C.

Limitations: $G \subset \mathbb{R}^2$ must have $\text{PD}_1\{G^\alpha\}$ with a wide diagonal gap, not for trees like T and C.

Next: better results by a deeper analysis of PD_1.
Another challenging example

The (noisy version of a) true cycle of G has a lower persistence than a fake cycle in $\text{PD}_1\{C^\alpha\}$, but the optimal pipe separates the correct dot.

The reconstructed graph has a correct cycle.
Computing and using persistence

Cloud \rightarrow filtration of complexes \rightarrow persistence

Obstacle: a big number of simplices $u = O(n^k)$ in dimension k for n points in a given cloud C.

Faster: a near linear time in dimension $k = 0$, approximate persistence $u = O(n)$ for $k > 0$.

Pipeline: t-SNE reduces dimension to $m \approx 4$ preserving geometry, TDA approximates a 1D skeleton for a further optimisation/visualisation.
Summary: TDA needs Statistics

- TDA quantifies geometric properties of topological features (cycles, holes, voids)
- the persistence diagram is stable under any bounded noise in unorganised data
- HoPeS(\(C\)) is a 1D persistent structure giving a provably correct reconstruction of a graph

Wanted: statistics expertise and open minds including PhDs and postdocs with C++ skills.