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Abstract—Increasingly massive amounts of high-
resolution climate datasets are being generated by ob-
servations as well as complex climate models. As the
unprecedented growth of data continues, a massive chal-
lenge is to design automated and efficient data analysis
techniques that can extract meaningful insights from vast
datasets. In particular, a key challenge is the detection
and characterization of weather and climate patterns.
Machine learning, including deep learning, are currently
popularly used for these tasks. These techniques, however,
do not incorporate geometric features of data and tem-
poral persistence information. In this paper, we develop a
novel approach to pattern detection and characterization
based on dynamical systems, manifold learning and
topological data analysis (i.e., persistent homology) that
utilize important geometric and topological properties of
underlying patterns in datasets.

I. MOTIVATION

A large volume of data is currently produced by high
resolution global climate model simulations, observa-
tional campaigns and data assimilation (i.e., climate
reanalysis products combining a model with a range of
observational data). Both the volume and the complex
nature of climate data pose many challenges to design
an automated and efficient data analysis techniques.
Here we focus on one particular aspect of climate data
analysis, the detection of weather patterns. Typically,
pattern detection in the climate community has been
done using standard image processing techniques such
as image thresholding to detect weather patterns in
climate data [1]. However, an open challenge in the the
community, across many types of weather patterns, is
converging on reliable and consistent threshold values
for different variables [2]. Machine learning and deep
learning have recently started to gain recognition and
popularity due to their revolutionary success in com-
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mercial applications and fields such as computer vision,
robotics and control systems [3], [4].

We propose an alternative approach to weather pat-
tern detection that lies at the intersection of dynamical
systems, manifold learning and topological data analy-
sis [5]. Most existing machine or deep learning methods
applied to climate research do not incorporate geometric
and topological features of the underlying patterns, nor
do they include any temporal persistence information,
both of which are strongly linked to the physics and
evolution of the dynamical system under consideration
(i.e., the global climate system).

We develop and test this approach using canonical
fluid flow simulations with persistent repeating spatio-
temporal patterns, such as vortex streets. We hypoth-
esize that these patterns can be detected, identified
and characterized by the combination of the time-delay
coordinate embedding [6], manifold learning (i.e., diffu-
sion maps) [7], and recent advances in applied topology
(i.e., persistent homology) [8]. This fluid dynamical
system will serve as a test bench for the development of
a detection approach for other similar coherent spatio-
temporal patterns, such as atmospheric blocking and
Rossby waves in climate data. Atmospheric blocking is
a persistent weather pattern (high-pressure system) that
significantly influences the climatological westerly flow
at mid-latitudes, especially the North Atlantic, Europe,
and the North Pacific [9]. The impacts of blocking
can persist for several weeks over certain geographical
region and can have dramatic adverse consequences on
populations and economies [10].

In this paper, we present a proof-of-concept of this
approach. To the best of our knowledge, this approach
is novel and potentially highly promising for pattern
detection of wave-like phenomena.

II. APPROACH

This approach incorporates temporal, geometric and
topological information to detect persistent repeating
patterns in fluid and climate simulations.
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Fig. 1. The flowchart illustrates the approach to topological pattern detection in fluid or climate simulation data. The inputs are snapshots
of a multivariate climate dataset. The sliding window coordinate embedding and diffusion maps are applied to represent the data as a
low-dimensional point cloud. This embedding reveals a topological structure that is a discrete representation of repeating patterns in the
data. The output is a set of persistence diagrams and their corresponding set of point clouds. Finally, there are two ways of detecting
patterns: i) by measuring the 1-dimensional homology (orange dot marked as H1 class in the diagram); ii) by directly applying a machine
learning classifier to the point cloud or the persistence diagram suitably vectorized.

We start by describing the high-dimensional rep-
resentation of the data produced by the sliding win-
dow coordinate embedding and which can then be
compressed into a low-dimensional embedding using
diffusion maps. Next, we explain the idea behind the
topological data analysis, in particular, 1-dimensional
persistent homology that can infer qualitative infor-
mation about the structure and shape of the data. In
addition, we mention where and how machine learning
methods can be integrated into this approach.

A. Sliding Window Embedding and Manifold Learning
The evolution of a dynamical system on some at-

tractors (i.e. its trajectory) can be reconstructed from
measured or simulated time series data using Takens
time-delay or sliding window embedding[6]. In our
approach the sliding window embedding is applied to
raw 2-dimensional snapshots of fluid flow or climate
simulation data, which is an extension of the original
embedding theorem applied to 1-dimensional time se-
ries [11].

If we denote fluid or climate simulation as a sequence
of scalar fields indexed by the timesteps (t ≥ 0). For
given positive integers W (width) and H (height), a
simulation with W ×H grid points is a function

X : Z+ −→ RW×H (1)

Consider a sequence of scalar fields {Xi}, i =
1, 2, 3, ..., n for a given integer m ≥ 0 (the dimension),
and a real number τ ≥ 0 (the delay / lag), the sliding
window (SW) coordinate embedding of X at time t is
defined as a vector

SWm,τX(t) =


X(t)

X(t+ τ)
...

X(t+mτ)

 ∈ RW×H×(m+1) (2)

By applying manifold learning (i.e., the diffusion
maps algorithm [7]) to the sliding window coordinate
embedding space, a new low-dimensional representa-
tion (a point cloud) in the diffusion space (proba-
bilistic space) is provided. The algorithm is a non-
linear technique for dimensionality reduction (or fea-
ture extraction) of data according to parameters of its
intrinsic geometric structure. In general, the diffusion
maps algorithm approximates the Laplace-Beltrami op-
erator associated with the Gaussian kernel k(Xi, Xj) =

e
−‖SWm,τXi−SWm,τXj‖

ε , where ε is the kernel scale param-
eter. The operator is defined as follows

Lφj = λjφj , (3)



TOWARDS TOPOLOGICAL . . .

Fig. 2. Visualization of preliminary results for fluid flow (upper row; left) and Modern-Era Retrospective Analysis for Research and
Application, Version 2 (MERRA-2) data (lower row; left) and their corresponding low-dimensional point cloud embeddings and persistence
diagrams.

where L is a discrete Laplacian operator associated
with the Gaussian kernel and φj are the eigenfunctions
(eigenvectors) capturing temporal information of the co-
herent patterns and λj are their associated eigenvalues.

The obtained diffusion embedding space (Laplace-
Beltrami eigenfunctions) is a more robust metric to
“topological noise” in persistent homology computa-
tions [12].

B. Topological Data Analysis & Machine Learning

Topology is a branch of mathematics that studies
properties of “shapes” (structures) that are preserved
under continuous deformations (e.g., stretching, bend-
ing or folding but without tearing). In algebraic topol-
ogy, homology is a general way of describing these
properties (equivalence classes of loops). For exam-
ple, one of the primary properties is the number of

connected components in a topological space. Whereas
the connected components are essential topological de-
scriptors, the number of 1-dimensional “holes” (loops)
is a property of higher dimensional structures. Topo-
logical data analysis can be broadly described as as a
collection of data analysis techniques (including persis-
tent homology) that infer qualitative information about
the topological structure of data [8]. In recent years
persistent homology has been successfully applied in
many areas of science, including complex networks,
signal processing and computer vision [5], [13]. Per-
sistent homology is a tool that adapts the homology to
finite metric spaces or point clouds (PC) in which 1-
dimensional “holes” are tracked in a set of simplicial
complexes that is constructed on top of the point cloud
by adding edges and triangles. Let (PC, dPC) be a
point cloud, where dPC is a distance function (in this
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case the diffusion distance [7]). The Rips complex
Rα(PC) at scale parameter α ≥ 0 is the collection of
subsets of PC such that dPC(PCi, PCj) ≤ α. There is
an inclusion Rα(PC) in Rβ(PC) for any α ≤ β. The
sequence of inclusions is called a Rips filtration. The
Birth is the distance in the Rips filtration at which a loop
first appears and the Death is the distance at which it
disappears. Birth-Death pairs are represented as points
on a persistence diagram, as shown in Figure 1. The
loop that dies later is geometrically larger and it usually
means that those features are the most significant in
the studied point cloud (data). Finally, one can apply a
machine learning classifier to the persistence diagrams
or directly to the point clouds in diffusion space [14],
[15], [16].

III. TOWARDS REAL DATA - PROOF OF CONCEPT

Following the steps described above in our approach,
we present results from two simple experiments with
real data: i) canonical fluid flow simulations; ii) a
climate reanalysis product (Modern-Era Retrospective
Analysis for Research and Application, Version 2).
First, small patches (100 × 100 pixels) have been
extracted from each timestep of the data. Next, the
sliding window embedding, diffusion maps algorithm
and persistent homology (the Rips complex) have been
applied to sequence of patches.

Figure 2 shows examples of the fluid flow and
climate data and their corresponding low-dimensional
representation (point clouds) with associated persis-
tence diagrams. Note that in both examples there is a
persistent repeating pattern represented by loop struc-
tures. The loop structures have been detected by the
persistent homology algorithm, as shown by the furthest
orange dots (H1 class) from the diagonal lines in the
persistence diagrams.

Thus we have shown that a combination of dynamical
systems theory, manifold learning and topological data
analysis can facilitate a new way of detecting persistent
repeating patterns in fluid flow and climate simulation
data. We are continuing to develop this approach for
application to atmospheric wave phenomena and atmo-
spheric blocking patterns.
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