Computing invariants of knotted graphs given by sequences of points in 3-space

Vitaliy Kurlin, http://kurlin.org Microsoft Research Cambridge and Durham University, UK

The secondment at Microsoft was supported by the EPSRC *Impact Acceleration Account*

• • • • • • • • •

Availability of real proteins

Protein Data Bank http://www.rcsb.org/pdb.

Each PDB file has 3D coordinates of atoms

linearly ordered along a protein backbone.

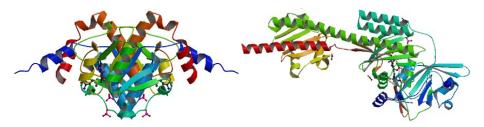
Left: 1v2x tRNA methyltransferase. Right: 3zq5.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problems on knotted structures

Knotted graphs are good model for proteins,

harder to visualize and recognize than knots.



- Encode long knotted structures in a simple way.
- Compare knotted structures up to deformations.

Polygonal knotted graphs in \mathbb{R}^3

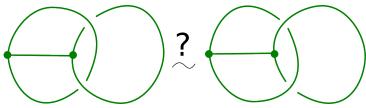
Def: a polygonal knotted graph is an embedding $f : G \to \mathbb{R}^3$ consisting of finitely many *straight segments*. So f(G) has no self-intersections, but may have *double crossings* under $f(G) \to \mathbb{R}^2$.

If $G \approx S^1$, the knotted graph $S^1 \subset \mathbb{R}^3$ is a knot. If $G \approx \bigsqcup_{i=1}^m S_i^1$, the knotted graph is called a link.

Isotopy of knotted graphs

Def: an ambient isotopy between graphs $G, H \subset \mathbb{R}^3$ is a continuous family of ambient homeomorphisms $F_t : \mathbb{R}^3 \to \mathbb{R}^3, t \in [0, 1]$,

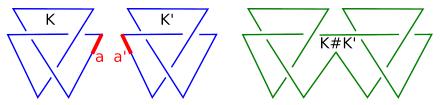
where $F_0 = id$ on \mathbb{R}^3 and $F_1(G) = H$.



Are these two graphs isotopic or not in \mathbb{R}^3 ?

Classify only prime knots

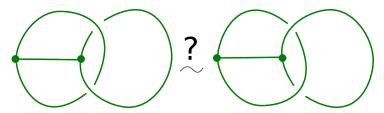
Def : a knot not isotopic to a *connected sum* of non-trivial knots is prime, similarly for graphs.



Any knot uniquely decomposes into prime knots (up to a permutation of summands as usual).

Isotopy invariants of graphs

An invariant is a function {isotopy classes} \rightarrow {numbers} whose values are easy to compare.



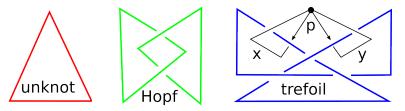
Simple: number of components of G is weak.

Powerful: 3D complement $\mathbb{R}^3 - G$ of the graph.

くしゃ 人間 そう キャット マックタイ

Knotted Graph Group $\pi_1(\mathbb{R}^3 - G)$

Def: KGG is the group of closed loops in $\mathbb{R}^3 - G$ at a base point *p* up to continuous movements.



Unknot : $\pi_1 = \mathbb{Z}$ (a loop can go around *n* times). Hopf link : $\pi_1 = \mathbb{Z}^2$ ($\mathbb{R}^3 - G$ deforms to a torus). Trefoil : $\pi_1 = \langle x, y | xyx = yxy \rangle$, see the picture.

π_1 : almost complete invariant

Th (Gordon, Luecke, 1989). Knots $K, K' \subset S^3$ are isotopic *if and only if* $S^3 - K \approx S^3 - K'$ (an orientation-preserving homeomoprhism). **Th** (Whitten, 1987). For prime knots K, K',

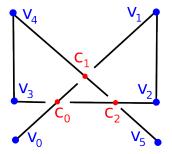
the complements $S^3 - K \approx S^3 - K'$ if and only if

their groups $\pi_1(S^3 - K) \cong \pi_1(S^3 - K')$.

Input and output in practice

Each PDB file has 3D coordinates of all atoms.

Input: a sequence of 3D points along every edge-path of a polygonal graph $G \subset \mathbb{R}^3$, e.g.



 $v_0, v_1, v_2, v_3, v_4, v_5 \in \mathbb{R}^3$. **Output**: a presentation of the *Knotted Graph Group* $\pi_1(\mathbb{R}^3 - G)$, e.g. $\pi_1 = \langle x, y \mid xyx = yxy \rangle$.

Alexander polynomial is easier

 $\pi_1(\mathbb{R}^3 - K)$ leads to Alexander polynomial of K.

Practically simple and powerful for small knots:

- computed in time $O(c^3)$ for *c* crossings of *K*,
- 550 values on 801 prime knots up to c = 11.
- used in *KnotProt* database of proteins.

For longer knots in larger real proteins, we now need more powerful invariants such as KGG.

Knotted Graph Group algorithm

{Sequences of 3D points of G} $\rightarrow \pi_1(\mathbb{R}^3 - G)$.

Stage 1. Shorten a graph $G \subset \mathbb{R}^3$ of a length n to a graph G' of a length $m \le n$ in time $O(n^2)$.

Stage 2. *Find a Gauss code* of a length $O(m^2)$ for the shortened graph *G'* in time $O(m^2)$.

Stage 3. Turn a Gauss code into the *Knotted* Graph Group $\pi_1(\mathbb{R}^3 - G)$ in time $O(m^2)$.

Stage 1: shortening a graph G *KMT algorithm* for shortening polygonal chains is used in *Rosetta* for 3D protein structures and detects if another edge *DE* meets $\triangle ABC$ by finding an intersection $P = DE \cap$ plane ABC and checking if $\angle APB + \angle BPC + \angle CPA = 2\pi$. В vertex B

Arithmetic floating point errors are up to $3 \cdot 10^{-4}$

removed

empty

triangle

Improved KMT algorithm for KGG

An edge *DE* meets $\triangle ABC$ if and only if the volumes of 5 tetrahedra satisfy the equation $|V_{ABCD}| + |V_{ABCE}| = |V_{ABDE}| + |V_{ACDE}| + |V_{BCDE}|.$ Each signed volume is a 3×3 determinant. В vertex B empty removed triangle

This criterion has much smaller error $\approx 10^{-10}$ in comparison with $3 \cdot 10^{-4}$ in the standard KMT.

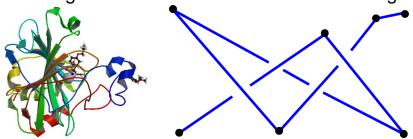
Experiments on knotted proteins

A polygonal chain $K \subset \mathbb{R}^3$ with v(K) vertices and c(K) crossings simplifies to K' whose Gauss code and knot type are easily found.

PDB	v(K)	c(K)	v(K')	c(K')	knot
1v2x	191	39	10	4	31
4ruy	263	101	7	4	3 ₁
3oil	267	102	7	3	31
2rh3	124	26	7	4	-3 ₁
3zq5	517	174	7	6	4 ₁

One simplified protein: 4ruy

The initial protein with 263 vertices and 101 crossings reduces to 7 vertices and 4 crossings.

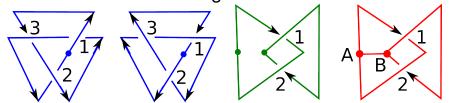


The diagram is *geometrically* (not topologically) *minimal* since no triangles can be removed.

The knot type is a *trefoil* confirmed by KGG.

Stage 2: Gauss code of a graph

Def: in a plane diagram of $G \subset \mathbb{R}^3$, *label vertices* and *crossings* along each directed edge-path of *G*. Each undercrossing has the extra minus.

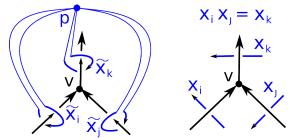


Trefoils have Gauss codes (1, -3, 2, -1, 3, -2), (2, -3, 1, -2, 3, -1). Hopf link : (-1, 2), (1, -2). Hopf graph : (A, B), (A, -1, 2, A), (B, 1, -2, B).

π_1 : relations for loops at vertices

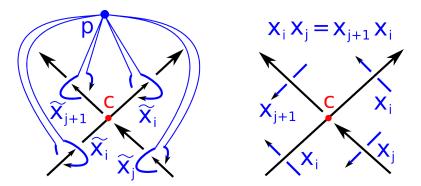
Fix a point p at ∞ above the plane diagram.

Loops \tilde{x}_i around arcs represent generators x_i .



Relation for a vertex *v* is $x_i x_j x_k^{-1} = 1$, i.e. power +1 for incoming arcs, -1 for outgoing arcs.

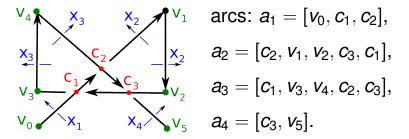
π_1 : relations for crossings



Relation for a crossing *c* is $x_i x_j x_i^{-1} = x_{j+1}$, i.e. the next x_{j+1} is conjugate to the previous x_j .

Stage 3: presentation of $\pi_1(\mathbb{R}^3 - G')$

A diagram splits by crossings and vertices into



Use a Gauss code to write *Wirtinger relations*: $x_1x_2x_1^{-1} = x_3$, $x_3^{-1}x_1x_3 = x_2$, $x_2x_4x_2^{-1} = x_3$, with $x_1 = x_4$ we get $\pi_1 = \langle x, y \mid xyx = yxy \rangle$.

Running time for stages 1, 2, 3

Stage 1: $O(n \log n)$ to order all deg 2 vertices by the increasing length |AC| between neighbours. O(n) time to decide if *ABC* is replaced by *AC*.

Stage 2: go along the shortened graph G' and note $O(m^2)$ intersections of projected *m* edges.

Stage 3: $\pi_1(\mathbb{R}^3 - G')$ has $O(m^2)$ generators, convert each vertex/crossing into a relation.

Past work: π_1 from a big cubical 2-complex obtained from $\mathbb{R}^3 - K$ at a fixed resolution.

Abelian invariants of a group

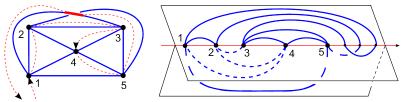
Th: any finitely generated abelian group is $\mathbb{Z}^r \oplus \mathbb{Z}_{q_1} \oplus \cdots \oplus \mathbb{Z}_{q_l}$, where abelian invariants $q_1, \ldots, q_l \ge 2$ are unique up to permutation.

Def: the abelian invariants of any non-abelian group come from the abelian quotients H/[H, H] for all subgroups H up to a certain index.

Brendel, Dlotko, Ellis, Juda, Mrozek: abelian invariants of $\pi_1(\mathbb{R}^3 - K)$ with indices up to 6 *distinguish all prime knots* up to 11 crossings.

3-page embedding in linear time

Th (VK, IVAPP'15): for any Gauss code W of a graph $G \subset \mathbb{R}^3$, in *time* O(|W|) we can *embed* G into a *3-page book* (a union of 3 half-planes).



The *best recognition* algorithm for knots & links simplifies a 3-page embedding by local moves. *Next step* : extend this simplification to graphs.

Summary and future work

- A knotted graph of a length *n* is shortened to a smaller length *m* ≤ *n* in time *O*(*n*²).
- A presentation of *Knotted Graph Group* π₁(ℝ³ – G) is computed in time O(m²)
- *C++ code*, examples at http://kurlin.org.
- Compute abelian invariants of the Knotted Graph Group $\pi_1(\mathbb{R}^3 - G)$ using GAP.
- Classify periodic entanglements in 3-torus by comparing abelian invariants of KGG.