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Availability of real proteins
Protein Data Bank http://www.rcsb.org/pdb.

Each PDB file has 3D coordinates of atoms

linearly ordered along a protein backbone.

Left: 1v2x tRNA methyltransferase. Right: 3zq5.

http://www.rcsb.org/pdb


Problems on knotted structures
Knotted graphs are good model for proteins,

harder to visualize and recognize than knots.

• Encode long knotted structures in a simple way.

• Compare knotted structures up to deformations.



Polygonal knotted graphs in R3

Def: a polygonal knotted graph is an embedding
f : G→ R3 consisting of finitely many straight
segments. So f (G) has no self-intersections, but
may have double crossings under f (G)→ R2.

If G ≈ S1, the knotted graph S1 ⊂ R3 is a knot.
If G ≈ tm

i=1S1
i , the knotted graph is called a link.



Isotopy of knotted graphs
Def: an ambient isotopy between graphs

G,H ⊂ R3 is a continuous family of ambient

homeomorphisms Ft : R3 → R3, t ∈ [0,1],

where F0 = id on R3 and F1(G) = H.

Are these two graphs isotopic or not in R3?



Classify only prime knots

Def : a knot not isotopic to a connected sum of
non-trivial knots is prime, similarly for graphs.

Any knot uniquely decomposes into prime knots

(up to a permutation of summands as usual).



Isotopy invariants of graphs

An invariant is a function {isotopy classes} →
{numbers} whose values are easy to compare.

Simple: number of components of G is weak.

Powerful: 3D complement R3 −G of the graph.



Knotted Graph Group π1(R3 −G)

Def: KGG is the group of closed loops in R3 −G
at a base point p up to continuous movements.

Unknot : π1 = Z (a loop can go around n times).

Hopf link : π1 = Z2 ( R3−G deforms to a torus).

Trefoil : π1 = 〈x , y | xyx = yxy〉, see the picture.



π1 : almost complete invariant

Th (Gordon, Luecke, 1989). Knots K ,K ′ ⊂ S3

are isotopic if and only if S3 − K ≈ S3 − K ′

(an orientation-preserving homeomoprhism).

Th (Whitten, 1987). For prime knots K ,K ′,

the complements S3−K ≈ S3−K ′ if and only if

their groups π1(S3 − K ) ∼= π1(S3 − K ′).



Input and output in practice

Each PDB file has 3D coordinates of all atoms.

Input: a sequence of 3D points along every
edge-path of a polygonal graph G ⊂ R3, e.g.

v0, v1, v2, v3, v4, v5 ∈ R3.
Output: a presentation
of the Knotted Graph
Group π1(R3 − G), e.g.
π1 = 〈x , y | xyx = yxy〉.



Alexander polynomial is easier

π1(R3 − K ) leads to Alexander polynomial of K .

Practically simple and powerful for small knots:

• computed in time O(c3) for c crossings of K ,

• 550 values on 801 prime knots up to c = 11.

• used in KnotProt database of proteins.

For longer knots in larger real proteins, we now
need more powerful invariants such as KGG.



Knotted Graph Group algorithm

{Sequences of 3D points of G} → π1(R3 −G).

Stage 1. Shorten a graph G ⊂ R3 of a length n
to a graph G′ of a length m ≤ n in time O(n2).

Stage 2. Find a Gauss code of a length O(m2)

for the shortened graph G′ in time O(m2).

Stage 3. Turn a Gauss code into the Knotted
Graph Group π1(R3 −G) in time O(m2).



Stage 1: shortening a graph G
KMT algorithm for shortening polygonal chains
is used in Rosetta for 3D protein structures and

detects if another edge DE meets 4ABC by
finding an intersection P = DE ∩ plane ABC

and checking if ∠APB + ∠BPC + ∠CPA = 2π.

Arithmetic floating point errors are up to 3 · 10−4.



Improved KMT algorithm for KGG
An edge DE meets 4ABC if and only if the
volumes of 5 tetrahedra satisfy the equation

|VABCD|+ |VABCE | = |VABDE |+ |VACDE |+ |VBCDE |.

Each signed volume is a 3× 3 determinant.

This criterion has much smaller error ≈ 10−10 in
comparison with 3 · 10−4 in the standard KMT.



Experiments on knotted proteins
A polygonal chain K ⊂ R3 with v(K ) vertices
and c(K ) crossings simplifies to K ′ whose
Gauss code and knot type are easily found.

PDB v(K ) c(K ) v(K ′) c(K ′) knot
1v2x 191 39 10 4 31

4ruy 263 101 7 4 31

3oil 267 102 7 3 31

2rh3 124 26 7 4 −31

3zq5 517 174 7 6 41



One simplified protein: 4ruy
The initial protein with 263 vertices and 101
crossings reduces to 7 vertices and 4 crossings.

The diagram is geometrically (not topologically)
minimal since no triangles can be removed.

The knot type is a trefoil confirmed by KGG.



Stage 2: Gauss code of a graph
Def: in a plane diagram of G ⊂ R3, label vertices
and crossings along each directed edge-path of
G. Each undercrossing has the extra minus.

Trefoils have Gauss codes (1,−3,2,−1,3,−2),
(2,−3,1,−2,3,−1). Hopf link : (−1,2), (1,−2).

Hopf graph : (A,B), (A,−1,2,A), (B,1,−2,B).



π1 : relations for loops at vertices
Fix a point p at∞ above the plane diagram.

Loops x̃i around arcs represent generators xi .

Relation for a vertex v is xixjx−1
k = 1, i.e.

power +1 for incoming arcs, -1 for outgoing arcs.



π1 : relations for crossings

Relation for a crossing c is xixjx−1
i = xj+1, i.e.

the next xj+1 is conjugate to the previous xj .



Stage 3: presentation of π1(R3−G′)
A diagram splits by crossings and vertices into

arcs: a1 = [v0, c1, c2],

a2 = [c2, v1, v2, c3, c1],

a3 = [c1, v3, v4, c2, c3],

a4 = [c3, v5].

Use a Gauss code to write Wirtinger relations:

x1x2x−1
1 = x3, x−1

3 x1x3 = x2, x2x4x−1
2 = x3,

with x1 = x4 we get π1 = 〈x , y | xyx = yxy〉.



Running time for stages 1, 2, 3
Stage 1: O(n log n) to order all deg 2 vertices by
the increasing length |AC| between neighbours.

O(n) time to decide if ABC is replaced by AC.

Stage 2: go along the shortened graph G′ and
note O(m2) intersections of projected m edges.

Stage 3: π1(R3 −G′) has O(m2) generators,
convert each vertex/crossing into a relation.

Past work: π1 from a big cubical 2-complex
obtained from R3 − K at a fixed resolution.



Abelian invariants of a group
Th: any finitely generated abelian group is
Zr ⊕ Zq1 ⊕ · · · ⊕ Zql , where abelian invariants
q1, . . . ,ql ≥ 2 are unique up to permutation.

Def: the abelian invariants of any non-abelian
group come from the abelian quotients H/[H,H]

for all subgroups H up to a certain index.

Brendel, Dlotko, Ellis, Juda, Mrozek: abelian
invariants of π1(R3 − K ) with indices up to 6
distinguish all prime knots up to 11 crossings.



3-page embedding in linear time
Th (VK, IVAPP’15): for any Gauss code W of a
graph G ⊂ R3, in time O(|W |) we can embed G
into a 3-page book (a union of 3 half-planes).

The best recognition algorithm for knots & links
simplifies a 3-page embedding by local moves.

Next step : extend this simplification to graphs.



Summary and future work
• A knotted graph of a length n is shortened

to a smaller length m ≤ n in time O(n2).

• A presentation of Knotted Graph Group
π1(R3 −G) is computed in time O(m2)

• C++ code, examples at http://kurlin.org.

• Compute abelian invariants of the Knotted
Graph Group π1(R3 −G) using GAP.

• Classify periodic entanglements in 3-torus
by comparing abelian invariants of KGG.


