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One class classification as a practical approach for accelerating π-
π co-crystal discovery 

Aikaterini Vriza,a,b Angelos B. Canaj,a Rebecca Vismara,a Laurence J. Kershaw Cook,a Troy D. 
Manning,a Michael W. Gaultois,a,b Peter A. Wood,c Vitaliy Kurlin,d Neil Berry,a Matthew S. Dyer*a,b 
and Matthew J. Rosseinskya,b 

 

The implementation of machine learning models has brought major changes in the decision-making process for materials 

design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic 

attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification 

methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning 

based only on a well-defined class without counter examples. An extensive study on the different one-class classification 

algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials 

belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step 

approach presented in this study first trains the model using all the known molecular combinations that form this class of 

co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible 

yet unknown pairs from the ZINC15 database (21736 possible molecular combinations). Focusing on the highest-ranking 

pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast 

molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed 

understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current 

methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) 

and pyrene-9,10-dicyanoanthracene (2).

Introduction 

Machine learning approaches are increasingly incorporated into 

design workflows to explore and better understand the 

materials space.1–3 The ultimate goal is to identify more reliable 

methodologies and to develop smarter ways to accelerate the 

discovery of new materials with novel properties. Following the 

rapidly growing data availability, data driven approaches have 

taken hold as a tool for detecting patterns in known datasets 

and performing straightforward predictions. The quality of a 

machine learning model is highly dependent on the quality and 

the trends of the available data. Thus, the existence of reliable 

and complete databases is crucial for the development of 

predictive frameworks. However, machine learning models still 

suffer many limitations in terms of defining the appropriate 

representations of the target materials and/or achieving 

reliable predictions based solely on known instances or 

otherwise biased datasets. One-Class Classifiers are specifically 

designed to address this “positive examples only” problem that 

characterises many databases available in materials science 

(e.g., ICSD,4 CSD5). In the present work, we introduce one class 

classification as a promising methodology to tackle these 

drawbacks, using weakly-bound π-π organic co-crystals as a 

case study. The main goal is the identification of potential new 

candidates for co-crystallization among a wide range of 

polycyclic aromatic hydrocarbons (PAHs) and their subsequent 

synthesis and structural characterisation. Further an 

understanding about the connection between co-crystallization 

and chemical/structural properties of the molecules can be 

gained. As this is the first time one-class classification 

approaches are implemented in materials design, the existing 

algorithms are comprehensively investigated and critically 

discussed. The idea of applying one-class classification in 

materials science involves the accurate definition of the 

materials’ class of interest, e.g., the known PAHs co-crystals, 

such that any predictions can be made of novel co-crystals that 

might belong to the same class. As the interpretability of the 

machine learning models boosts their trustworthiness, we also 

investigated the contribution of the selected features on the 

final decisions for the co-crystal formation. Importantly, the 

applicability of the presented procedure is demonstrated by the 

identification of two novel co-formers and by the experimental 

realization of co-crystals 1 and 2, pyrene-6H-benzo[c]chromen-

6-one and pyrene-9,10-dicyanoanthracene, respectively. 
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A co-crystal is a crystalline single-phase material composed 

of two or more different molecular compounds in a specific 

stoichiometry.6–8 These compounds are neither 

solvates/hydrates nor simple salts and are connected via one or 

more non-covalent interactions, such as hydrogen bonding, π-π 

stacking, halogen bonds and charge transfer (C-T) interactions.9 

Co-crystal design has undoubtedly received most attention 

from the pharmaceutical industry. These compounds may offer 

the advantage of preserving the pharmacological properties of 

the Active Pharmaceutical Ingredient (API) whilst improving the 

physicochemical properties of the potential drug. 

Consequently, this attention stimulated the development of 

various theoretical and experimental studies for designing 

pharmaceutical co-crystals by selecting effective co-formers 

which are suitable with the API.10 Hydrogen bond propensity 

(HBP), pKa rule, Fabian’s method for molecular 

complementarity and Hansen solubility parameters are some of 

the most effective design approaches.10 The selection of the 

appropriate method is based mainly on the nature of the 

molecules and the way these molecules are interconnected.6,11 

Co-crystals are gaining emerging interest in other cutting-

edge research fields, ranging from photonic, to optical and 

electronic materials.12–15 It is well-known that most organic 

molecular crystals are insulators as there is no electronic 

interaction between the molecules.16 However, molecules with 

electron rich π-orbitals overcome this barrier, thus enabling 

electron mobility in cases where there is a favourable overlap 

of π-orbitals in adjacent molecules.17 π-π stacking is a common 

motif for obtaining electronic communication between the 

molecules and has been proven as an important characteristic 

of organic electronics (e.g., in conjugated polymers).18,19 A 

special category of molecules which self-assemble via π-π 

interactions are the PAHs, which can be regarded as two-

dimensional graphite segments.20 Hence, PAHs are considered 

promising candidates for electronic materials and have been 

extensively used for designing co-crystals with desirable 

electron mobilities.12,21,22 Most of the research on electronic co-

crystals is focused on the charge-transfer complexes between a 

good electron donor and a poor electron acceptor.21,23,24 This 

work suggests a promising pathway to expand the investigation 

on PAH-based co-crystals where the π-π interactions are the 

dominant structure-defining forces. 

Although π-π interactions are desirable for designing 

electronic functional co-crystals, they are relatively weak 

compared to stronger interactions such as hydrogen or halogen 

bonding. In a recent computational work, Taylor et al. 

emphasized the difficulty in evaluating the thermodynamic 

stability of weakly-bound co-crystals without any additional 

group that can form charge transfer systems.25 The lack of 

strong energetic driving forces for co-crystallization makes the 

formation less favourable, thus these co-crystals are rare. In 

addition, the weak interactions give rise to shallow energy 

landscapes associated with multiple configurations of similar 

energy, hindering the structure prediction. The synthesis of 

weakly-bound co-crystal materials still remains a challenging 

task, albeit interaction between aromatic hydrocarbon systems 

have been suggested as a viable synthetic way on first principle 

calculations.26 To overcome the challenging limitations of 

predicting the π-π co-crystallization process, we will use data-

driven approaches. 

The selection of the most appropriate machine learning 

approach is strongly dependent on the nature of the problem 

to be solved and the quality of the available data. The 

Cambridge Structural Database (CSD),5 which collects and 

curates publicly-available crystal structure data worldwide, 

including existing co-crystals, has been used as the information 

source for the current study. Each year multiple tens of 

thousands of new crystal structures are added to the database 

(53199 new entries were added in 2019), increasing the 

demand for developing efficient and effective ways to extract 

non-trivial, valid and useful information to design new 

materials. The extracted dataset is composed of all the reported 

PAH co-crystals, with π-π stacking as the main interaction. After 

a careful investigation of the aforementioned dataset some 

observations are made. First of all, this category of co-crystals is 

a relatively small proportion, i.e., 12 % of the complete set of 

co-crystal in the CSD, as a consequence it becomes more 

challenging to extract clear patterns that dominate these 

combinations. Secondly, there is a sparsity of negative 

experimental co-crystallization observations due to the lack of 

publications explicitly reporting the failure of molecular 

combinations to co-crystallize. Thus, a publication bias is 

created imposing an imbalance towards the target class due to 

the non-existence of negative data. Finally, there is an internal 

constitutional bias as most of the data are on a subset of heavily 

studied systems, rather than uniformly distributed over all 

possible systems, chemistries and structural families. Herein, 

we introduce a general approach to tackle the biased datasets. 

Our approach, as demonstrated in Figure 1, is based on one 

class classification, a well-known method that has been applied 

to many research themes, such as novelty/outlier detection, 

concept learning or single class classification.27 However, it has 

not yet been employed in materials design problems. Contrary 

to other data-driven methods used for co-crystal design,11,28 

one class classification does not require the generation of a 

large number of negative examples from unsuccessful 

experiments,11 and is able to involve the available molecular 

descriptors to derive chemical understanding of the 

predictions.28 

As one class classification is imbalance tolerant, no specific 

distribution of the target class, PAH co-crystals, has to be 

assumed and thus one of the major problems in materials 

science regarding the lack of negative examples is tackled. The 

objective of one-class classification approaches is to accurately 

describe the ‘normality’, namely the distribution of the known 

dataset. It is assumed that the majority of the training dataset 

consists of ‘normal’ data.29 Thus, the one class classification 

algorithms learn to accurately describe the positive/known 

data. Deviations from this description are seen as anomalies 

and thus belong to a different class. The known data class is well 

characterized, and these instances are used as the training set. 

In this way the classifiers are focused on the deviations from the 

known distribution rather than focusing on the discrimination 
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Figure 1. Schematic representation of the one class classification method for ranking possible hydrocarbon molecular pairs according to their probability to form co-crystals. Starting 

from a representative set of eight molecules that contain the molecular and electronic structure characteristics that reflect the likelihood of forming polyaromatic hydrocarbon (PAH) 

co-crystals, two different datasets were constructed. The labelled dataset involves all the existing PAH co-crystals in CSD, whereas the unlabelled dataset contains all the possible 

molecular combinations of PAHs from ZINC15 database. A molecular pair is represented as a concatenation of the molecular descriptors and is used as the input to various one class 

algorithms. Each of the implemented algorithms fits a different decision function to the labelled data and then scores the unlabelled combinations. The outcome of the models is a 

score (from 0 to 1) indicating the probability of two molecules forming a stable co-crystal. The known combinations as well as that part of the unlabelled data predicted as inliers 

have higher scores close to 1, where the points that could be regarded as anomalies (dark blue crosses) have scores below a selected threshold value. In the end, a ranked pool of 

combinations is produced, significantly reducing the initial dataset of interest. The best performing method is used for predicting the co-former combinations to be tested 

experimentally. The aforementioned workflow led to the discovery of two novel co-crystals 1 and 2. 

task between the classes. In this context, as labelled data we 

refer to all the positive combinations extracted from the CSD 

Database (1722 molecular combinations, Figure 1), whereas the 

unlabelled data are the pairs generated from the ZINC15 

Database (21736 possible molecular combinations, Figure 1). 

Each molecular pair is represented as a concatenation of 

molecular descriptors covering a wide range of properties. The 

presented predicted pairs refer to the molecules we have 

chosen based on their molecular similarity to the representative 

set of starting molecules (See Methods, Extracting the labelled 

dataset), however the list can be easily extended by including 

new molecular pairs in the training (labelled) dataset. The 

implemented algorithms for one-class classification (anomaly 

detection) are separated into eight traditional and one neural 

network and are discussed in Supporting Information (Section 

2). 

 

 

Methods 

Extracting the labelled dataset. The labelled dataset of existing 

co-crystals in the CSD database was extracted using the CSD 

Python API (Application Programming Interface), version 2.0 

(December 2018). As a starting point, eight molecules with 

extended polyaromatic systems are used as a representative set 

for searching the CSD and generating the co-crystal space of 

interest (> 1700 molecular combinations). The selection of 

these representative eight initial molecules is performed on the 

basis of promising electronic properties (e.g., known organic 

semiconductors) and distinct geometry (i.e., the set is diverse in 

shape and symmetry). The names of the initial molecules as well 

as their 6 letter CSD Refcode were: coronene (CORONE), picene 

(ZZZYOC04), pentacene (PENCEN), triphenylene (TRIPHE), 

phenanthrene (PHENAN), fluoranthene (FLUANT), corannulene 

(CORANN01),  dinaphthol-anthracene (DNAPAN). The similarity 

search function of the CSD Python API is applied to those 
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molecules, using the standard CSD fingerprint similarity search 

with a Tanimoto similarity threshold of > 0.3530 and accepting 

only neutral organic molecules with known SMILES identifiers. 

The 1722 entries in the resulting list are crystal structures that 

include either one of these molecules or molecules that are 

structurally similar to them (based on CSD molecular fingerprint 

similarity). The search aims to identify all the co-crystals that 

have as co-formers PAHs whilst the main interaction between 

them is π-π stacking. Each co-crystal in CSD can be represented 

as a combination of simplified molecular-input line-entry 

(SMILES)31 separated with a full stop e.g., 

‘c1cc2ccc3cccc4ccc(c1)c2c34.N#CC(C#N)=C1C=CC(C=C1)=C(C#

N)C#N’ representing pyrene-TCNQ. Using this form, we can 

count the number of different molecules in the asymmetric unit 

and take into consideration the molecular stoichiometry of the 

co-formers. Combinations including common non-aromatic 

solvents are excluded. However, aromatic solvents are 

accepted e.g., benzene, as the interactions in this case are only 

π-π stacking and these combinations might hold important 

information about the predictions this work is interested in. 

Finally, the molecular combinations are filtered using Pipeline 

Pilot (version 2017)32 by applying a SMARTS33 filter that 

removes molecules with acidic hydrogens, making sure that the 

main interaction among the co-crystals is π-π stacking. The 

whole process is schematically described in the Supporting 

Information (Figure S1). 

Designing the unlabelled dataset. The dataset with the 

promising combinations of molecules is constructed using the 

ZINC15 database,34 which includes all the purchasable organic 

molecules. The molecules were taken from a version 

downloaded in August 2018. The same initial molecules used for 

the CSD search were used and the database was searched based 

on molecular Extended Connectivity Fingerprints (ECFP4) with a 

Tanimoto similarity threshold of > 0.35.35 After filtering out the 

molecules with acidic hydrogens using Pipeline Pilot, the ZINC 

database reveals 209 molecules with calculated Dragon 

descriptors that match the selected similarity criteria with the 

initial molecules. All the possible combinations of these 209 

molecules are taken into consideration, resulting in a dataset 

with 21736 unique pairs. 

Dataset bias. Bias in natural science datasets,36 as well in CSD,28 

has been reported before. Bias is a very general term and found 

in many categories. The studied dataset shows compositional 

bias due to the recurrence of some molecular components in 

the observed co-crystals. A different type of bias can be found 

considering the different molecular ratios, as the majority of the 

co-crystals of interest have 1:1 stoichiometry. In order to design 

co-crystals whose formation is driven by π-π stacking, the 

training set used was biased towards molecular combinations 

that are connected with that type of interaction. In some 

respect, we need this bias to build a target specific approach for 

detecting weakly interacting molecular pairs. However, our 

dataset is unbalanced as there are some popular co-crystal co-

formers that tend to appear many times in π-π stacking pairs, 

e.g., benzene, toluene, pyrene, which leads to these molecules 

being over-represented in the highest scored pairs. One 

objective of this study is thus to identify new co-crystal forming 

molecules that do not correspond to a previous database entry.  

Feature generation and engineering. In this context, features 

are defined as the molecular descriptors that uniquely 

represent each molecule. The chemical space of interest can be 

defined by the appropriate set of numerical descriptors that 

capture the characteristics and/or properties of the molecules. 

With n linearly independent descriptors, an n-dimensional 

space is defined. A careful selection of the appropriate 

descriptors is critical for the rational design and implementation 

of any machine learning method.37 Each molecule is 

represented as an n-dimensional vector with n being the 

number of the available descriptors calculated with Dragon 

software,38 version 6.0/2012. Traditional one-class classification 

approaches require extensive feature engineering as it is 

desirable to reduce the dimensions of the problem before the 

analysis. The dimensionality reduction is performed following 

the standard good practices for removing descriptors that are 

highly correlated to each other or describe similar properties.39 

Features that are correlated more than 0.92 as well as those 

that have variance lower than 0.4 were removed from each co-

former’s dataset. The feature selection process was performed 

according to the molecular complementarity approach.40 All the 

pairwise correlations between the molecular pairs were 

calculated, after removing co-crystals containing benzene-like 

solvents to avoid possible bias on the feature importance. The 

pairwise correlations were calculated with both Pearson and 

Spearman methods40 and the p-values were used to verify that 

the correlations are statistically significant. We regard as 

important and unbiased features those with both Pearson’s and 

Spearman’s correlations above 0.4 and p-values below 10-3. 

Finally, each single molecule is represented by a 24-dimensional 

space of the highly pairwise-correlated descriptors (Table S2). 

Thus, the molecular pairs are the concatenation of the 

individual vectors of each single molecule. All the labelled 

molecules were standardized to [0,1] using the scaling methods 

provided from sci-kit learn, such that all the numerical features 

will belong to the same range. The scaler is fitted to the known 

molecules that form co-crystals. Then the trained scaler is 

implemented to transform each molecule in the molecular pairs 

in both the labelled and the unlabelled datasets, such that there 

will be a consistency among them and the same molecules will 

get the same representation independent of which pair they 

belong to. 

Traditional one class classification. Eight different algorithms 

were selected from the PyOD and sklearn library representing 

the wide range of the one-class classification (anomaly 

detection) categories as described above: Gaussian Mixture 

Models (GMM), Local Outlier Factor (LOF), k-nearest neighbors 

(kNN), Isolation Forest (Iforest), One Class SVM (OCSVM), 

Histogram Based Outlier Score (HBOS), Cluster-based Local 

Outlier Factor (CBLOF) and Feature Bagging (with LOF as the 

basis algorithm) (Supporting Information Section 2 and Table 

S3).41 Each algorithm has its internal scoring function, 

depending on the cost function it tries to minimize. For 

achieving better predictive performance and ensuring the 
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robustness of our method the models were combined in an 

ensemble way. For consistency with the GMM model from the 

scikit-learn library,42 the scores from the PyOD library were 

multiplied by -1 to have higher scores for the inliers and lower 

for the outliers. Each model was initially trained and optimized 

separately to provide an anomaly score to the input data. Then 

the scores of the pretrained models were normalised between 

[0,1] and averaged, following the methodology from the combo 

library43 so that the outputs become comparable.  

Hyperparameter tuning. As the performance of the algorithms 

is highly dependent on the choice of the hyperparameters, i.e., 

algorithm variables, the optimization step is crucial for 

achieving the highest possible accuracy. The tuned 

hyperparameters of each method are presented in Supporting 

Information (Table S3). For the machine learning models, the 

optimization step is about searching for the hyperparameters 

with the lowest validation loss. Bayesian optimization was used 

via the Hyperopt library.44  The main idea behind Hyperopt is to 

get more points from the regions with high probability of 

yielding good results and less points from elsewhere. Hyperopt 

library was implemented for each of the eight algorithms from 

the PyOD&scikitlearn library,41,42 to find the best set of 

parameters to maximize the average accuracy of the k-fold 

cross-validation. 

Deep Learning Approach. Using the traditional one class 

classification algorithms as baselines, the application of a deep 

learning method was investigated for extending the dataset to 

the whole n-dimensional space (n = 3714, i.e., 1857 descriptors 

for each molecule in the pair). In that way the predictions are 

not only based on a few pairwise correlated descriptors. That is 

very important as the co-crystal design problem is complex and 

thus higher-order interacting features might have a key role in 

the co-crystal formation. The main advantage of using a neural 

network in this context is that the extensive feature engineering 

part can be omitted, as the network can learn relevant features 

automatically. The most broadly used deep learning approaches 

for one class classification rely mainly on Autoencoders. An 

Autoencoder is a neural network that learns a representation of 

the input data by trying to accurately reconstruct the input with 

minimum error. It is considered to be an effective measure for 

separating inlier and outlier points.45 Autoencoders are used for 

learning the representation of the labelled data and then the 

unlabelled data are reconstructed using the same weights from 

the target class. The decision of whether a new datapoint is an 

inlier or an outlier is made based on the reconstruction error. 

High reconstruction error indicates that a sample is most 

probably an outlier, whereas when we have low reconstruction 

error the samples most probably belong to the same 

distribution as the labelled data. Autoencoders have the 

objective of minimizing the reconstruction error, but do not 

target one class classification directly. For designing a more 

compact methodology, the adapted approach incorporates 

both an Autoencoder for representational learning which is 

jointly trained with a Feed Forward Network targeting one-class 

classification.  

Deep One Class Architecture. The Deep Support Vector Data 

Description (DeepSVDD) architecture used in this paper is 

adapted from the work of Ruff et al.29,46 The aim of DeepSVDD 

is to find a data-enclosing hypersphere of minimum size, such 

that the normal data points will be mapped near the center of 

the hypersphere whereas anomalous data are mapped further 

away. The objective of DeepSVDD is to jointly learn the network 

parameters together with minimizing the volume of the 

hypersphere. The deep learning protocol followed by 

DeepSVDD is a two-step process. The first step, i.e, the 

pretraining step, is composed by a Convolutional Autoencoder 

for effectively capturing the representation of the data. During 

the pretraining, the center of the hypersphere is calculated and 

is fixed as the mean of the network representations of the 

known data.29 During the second step, the latent dimension of 

the Encoder is connected to a Feed Forward Neural Network 

with the specific task of minimizing the loss function (distance 

from the center of the hypersphere). The same pretraining and 

training steps as in the DeepSVDD method were used for our 

problem settings, whereas the Convolutional Autoencoder was 

substituted with the Set Transformer Autoencoder adapted 

from Lee et al.47 The implemented set-input architecture uses a 

self-attention mechanism that allows the encoding of higher-

order interactions and is able to directly perceive the order 

invariance among the pairs. All the known data (molecular 

pairs) are considered to belong to the hypersphere and they are 

scored based on their distance from the center, thus the lower 

the score the closer to the center and the more of an inlier is 

the data point. Likewise, the unlabelled data are assigned scores 

based on their distance from the pre-defined center. All the 

scores are multiplied by -1 and normalized from 0 to 1 so that 

they are comparable to the other models and give scores close 

to 1 for the inliers, whereas the points scored close to 0 are the 

anomalies. 

Model evaluation. The evaluation of the classification 

performance for one-class classifiers differs from multi-class 

classification as only the probability density of the positive class 

is known. That means that the model can only be optimized and 

validated by minimizing the number of positive class instances 

that are not accepted by the one-class classifier (false 

negatives).27 Opposed to the binary classifiers, where the 

decision of the class is made based on a set threshold, usually 

0.5 (if a point scores below 0.5 it belongs to the first class else 

to the second), in one class classification the threshold is 

defined only from the known class. That is set using a parameter 

(here referred as contamination), which defines the amount of 

noise we expect to have in our known class. Herein, we accept 

that parameter as 0.05, meaning that 95% of the known data 

are inliers and only a very small part of them that deviated from 

the rest can be regarded as outliers. The evaluation of the 

models was performed using five-fold cross validation on the 

labelled dataset. The labelled dataset is split into five parts 

(folds) where 4/5 are used for the training and the remaining 

part is used for the validation. The process is repeated five 

times, each time selecting a different fold and the evaluation is 

performed using accuracy metrics from version 0.22 of the 
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scikit-learn package. The final accuracy is calculated by taking 

the mean of the five accuracy scores of the validation set. 

Model Interpretability. To better understand the features that 

are important for the neural network categorization of the 

molecular pairs in one class, we used SHAP (SHapley Additive 

exPlanations).48 This interpretability method is based on the 

calculation of the game theoretically optimal Shapley values, 

which are indicative of the contribution of each feature to the 

final prediction. One of the advantages of using SHAP is that it 

offers both local interpretability, by looking at how the features 

in each individual combination will affect the decision, as well 

as global interpretations, by aggregating the local values. We 

are thus able to know which features in a specific molecular pair 

affect the decisions more and extract general views on the 

features that influence and dominate the overall design of that 

type of material. 

Co-former ratio predictions. For the prediction of ratios 

between co-formers, the binary classification approach was 

implemented. The scikit-learn 0.22 version of the XGBoost 

classifier was trained on the known co-crystal molecular ratios. 

We are interested in detecting if a co-former combination will 

be found in 1:1 or higher ratio. The 1:1 molecular ratio was 

assigned to label ‘0’, whereas the higher ratios were labelled as 

‘1’. As the majority of CSD co-crystals were found in 1:1 ratio we 

have an imbalanced dataset. To overcome this bias, SMOTE 

algorithm from the IBM package imbalanced-learn was used to 

generate artificial datapoints that could belong to the 

underrepresented class such that the two classes will become 

balanced.49 The optimum set of parameters were selected with 

the Hyperopt algorithm. 

Pareto optimization. Pareto optimization simultaneously 

identifies the optimal values in a set of parameters and was 

used to select and prioritise the co-formers to be 

experimentally tested. In our case the parameters that were 

optimised are the score from the model and the similarity to 

7,7,8,8-Tetracyanoquinodimethane (TCNQ). This two-

parameter optimization was implemented to drive the decision 

making for the experimental screening.  

Euclidean distance and 2D visualization. The similarity between 

the experimentally synthesized co-crystals and the rest of the 

labelled dataset is measured using the Euclidean distance of the 

high-dimensional descriptor vectors. As such, the closest 

feature-wise known structures to the synthesised co-crystals 

were detected. Furthermore, the labelled dataset was 

projected in two dimensions using the Uniform Manifold 

Approximation and Projection (UMAP) algorithm.50 UMAP is a 

dimensionality reduction technique based on Topological Data 

Analysis and is aiming to preserve both local and global 

topological structure of the data. The UMAP parameters were 

selected in a way such that the maximum of the distance is 

preserved when moving from the higher to lower dimensions. 

The distance preservation was measured by calculating the 

Pearson correlation coefficient of the distance matrix using the 

whole dimensionality and the distance matrix after the 

dimensionality reduction. The most effective settings were as 

follows (n_neighbours = 80, min_dist = 0.1, euclidean distance 

metric) resulting in Pearson correlation coefficient of 0.748. 

Experimental section. 

Materials and Chemicals. 9,10-dicyanoanthracene (CAS 

RN:1217-45-4, >98.0 %) was purchased from TCI UK Ltd.; Pyrene 

(CAS RN: 129-00-0, >97%) was purchased from TCI UK Ltd.; 6H-

Benzo[c]chromen-6-one (CAS RN: 2005-10-9, 96% was 

purchased from Fluorochem Ltd. All chemicals were used 

directly without further purification. No safety hazards were 

encountered during the described experimental procedures. 

Co-crystal Growth. Preparation of co-crystal pyrene-6h-

benzo[c]chromen-6-one (1): pyrene (20 mg, 0.1 mmol) and 

pyrene-6h-benzo[c]chromen-6-one (20 mg, 0.1 mmol) were 

dissolved in dichloromethane (6 mL) and heated at ~ 45 oC for 

16 hours under continuous stirring. After heating for 16 hours 

the resulting mixture was filtered (using Whatman filter paper). 

The filtered solution was allowed to stand at room temperature 

for slow evaporation in open air (partially covered). Colourless 

plate-like crystals of the co-crystal pyrene-6h-

benzo[c]chromen-6-one (1) appeared after 3-4 days. 

Preparation of co-crystal pyrene-9,10-dicyanoanthracene (2): 

Co-crystal 2 was synthesized following an analogous procedure 

as described for 1 using pyrene (20 mg, 0.1 mmol) and 9,10-

dicyanoanthracene (23 mg, 0.1 mmol). Orange column-like 

crystals of the co-crystal pyrene-9,10-dicyanoanthracene (2) 

appeared after 1-2 days. 

Characterization methods. Diffraction data for co-crystal 1 and 

2 were collected using a Rigaku AFC12K goniometer employing 

graphite monochromated Mo Kα (λ = 0.71073 Å) radiation 

generated from a Rigaku 007HF Molybdenum rotating anode 

microfocus X-ray target source and using a Saturn 724+ CCD 

detector. All data reduction and processing was performed 

using the CrysAlisPro software package and empirical 

absorption corrections using spherical harmonics were 

implemented in the SCALE3 ABSPACK scaling algorithm.51 The 

structures were solved using either direct52 or dual-space53 

methods and refined by full matrix least-squared on F2 with 

SHELXL2015.54 

Results 

The one class classification framework as expressed by the 

various implemented algorithms is discussed below. The two 

different workflows followed involve i) the application of 

traditional algorithms designed for one class classification after 

extensive feature engineering to reduce the dimensionality of 

the problem and ii) the design of a deep learning methodology 

for handling the specific co-crystals dataset, considering them 

as pairs of data, and avoiding feature engineering by solving the 

problem in higher dimensions. As traditional algorithms we are 

referring to the provided algorithms from PyOD/scikit-learn 

libraries and as Deep One Class to the deep learning model that 

was built by combining an Attention-based Encoder and 

deepSVDD network. In both workflows a two-step process is 
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employed. First the algorithms were trained and optimized on 

the known data and then they were used for scoring both the 

labelled and unlabelled molecular combinations. High scores 

are an indication for inliers, whereas the lower the score the 

higher the probability for a point to be an outlier. 

The score distribution of both the labelled and unlabelled 

data for all the implemented algorithms is presented in Figure 

2. It can be observed that the labelled and unlabelled data form 

two overlapping classes. The unlabelled data consist of both 

positive and negative examples in an unknown proportion. 

Consequently, a certain part of the unlabelled data is expected 

to belong to the known class i.e., are inliers. Moreover, in the 

labelled data there is a small proportion of examples that 

significantly differs from the rest of the data and is regarded as 

noise of the normal class, i.e., outlier examples. The impact of 

the class noise is mitigated using one class classification, as a 

percentage of the labelled data are regarded as outliers during 

the hyperparameter optimization process (see Methods). In 

general, for both the traditional and deep one class 

classification workflows, i) the labelled data show higher scores 

with all the methods, ii) each method has a different way of 

scoring the samples and deciding for whether a point is a 

normality or anomaly and iii) only a certain part of the 

unlabelled data receives high scores. Differences arise between 

the algorithms because each is based on different definitions on 

what an oulier/inlier means, i.e., an outlier is a point far from 

other points (kNN), an easily splittable point (Isolation forest), 

not part of a large cluster (Cluster-based outlier detection) or a 

point far away from the center of a hypersphere (deepSVDD). 

Moreover, the traditional approaches differ from the deep 

approach in terms of the dimensionality of the features and the 

way the molecular pairs are perceived by the models. To this 

end, the two workflows are investigated separately. 

 

Traditional one class classification. The main characteristic of 

the traditional algorithms is the need for dimensionality 

reduction. For that reason, the important features were 

manually extracted based on molecular complementarity 

(highly pairwise correlated descriptors among the two 

molecules). The resulting 24 descriptors include the number of 

bonds (nBT), the number of heteroatoms (nHet), 

electrotopological characteristics (MAXDN, MAXDP, DELS), i.e., 

combination of electronic features and topological 

environment for given atoms, the topology and polarizability of 

the molecules (e.g., SpMax4_Bh(m), SM1_Dz(e)). A detailed list 

with the selected descriptors and their correlations can be 

found in the Supporting Information (Table S2). As each 

molecule is represented by a vector belonging to these 24 

descriptors, the molecular pair is the concatenation of two 

vectors. Importantly, for extensively covering the co-crystal 

space, the two individual vectors were concatenated in both 

directions in the training set as the input should be invariant to 

the position of the molecule in the vector (Figure S11). For 

instance, in the representation of the pyrene-TCNQ pairs (co-

crystal: PYRCBZ02), the score should be the same whether the 

input is given as pyrene-TCNQ or TCNQ-pyrene. 

A short description about how each of the traditional one 

class classification algorithms regards an outlying point as well 

as the selected hyperparameters can be found in the Supporting 

Information (Table S3). As a showcase, the way two different 

algorithms differentiate inliers from outliers is presented in 

Figure 3, where the co-crystal dataset was projected in the two 

dimensional space using Principal Component Analysis (PCA).55 

The bidirectionality of the training set is also observed by the 

symmetry of the projected data. 

 

Figure 2. Score distributions of the labelled (orange) and unlabelled (light blue) data using all the discussed one-class classification algorithms. Each algorithm employs a different 

scoring function to assign scores to the molecular combinations, giving in all the cases higher scores to the labelled  combinations (training set) whereas only a certain part of the 

unlabelled combinations (test set) receives high scores and can be regarded as inliers. As the number of unlabelled data is significantly higher than the number of known data, the y 

axis (showing the frequency) is normalized to [0,1] (for visualization purposes). The output scores of all the models are also normalized to [0,1]. A clearer and more definite separation 

among the two different datasets can be observed for both the Ensemble and Deep One Class methods, with Deep One Class covering a bigger range of scores and thus enabling a 

better separation. 
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Figure 3. Two examples of traditional one class classification algorithms, namely Local 

Outlier Factor (LOF) and Cluster Based Local Outlier Factor (CBLOF), visualizing the way 

the boundaries around the co-crystal space are drawn. The labelled co-crystals dataset 

was projected to two dimensions using Principal Component Analysis (PCA). PCA was 

applied after the calculation of the scores in all dimensions. 50 random points of the 

unlabelled dataset were selected for visualizing their position in the two-dimensional 

space. Points marked as green crosses are identified as inliers, whereas blue crosses are 

the outliers. It is observed that each algorithm is implementing a different scoring 

function and thus the decision boundaries that separate inliers from outliers differ.  

For achieving more reliable and robust predictions, the eight 

traditional one class classification algorithms were combined in 

an ensemble way by averaging their output. Thus, the final 

scores of both the labelled and unlabelled data were calculated 

by the ensemble. The distribution of the ensemble scores, after 

being normalized to [0,1], are shown in Figure 2. It is observed 

that the ensemble separates better the labelled from the 

unlabelled data in comparison to the individual traditional 

algorithms. That is an indication that the ensemble is a better 

classifier as the balance point above which the amount of 

labelled data is maximum and the number of unlabelled data is 

minimum is easier found.56 Numerically, that means that the 

scores around 0.7 can be regarded as good and promising 

scores for identifying novel molecular pairs and that the 5434 

out of the 21736 possible combinations are the top scored 

combinations. The performance of each algorithm was 

calculated by the True Positive Rate (TPR), defined as the 

average of correctly predicted inliers resulting from five-fold 

cross validation. As illustrated in Figure 4, all the algorithms 

achieve a high accuracy on the True Positive Rate and perform 

quite well on unseen data. However, the Gaussian Mixture 

Model (GMM) and the Histogram-based Model (HBOS) are less 

robust as indicated by the higher variation in the total accuracy 

(Figure 4 and Figure S12). The effect that the addition of data in 

the training set has on the accuracy is also investigated after 

calculating the learning curves of each algorithm. For the 

correct sampling of the bidirectional dataset in the different 

training set sizes, it should be ensured that equivalent pairs exist 

in each subset. 

Deep One Class Approach. Despite the fact that the 

aforementioned one class classification models show high 

Accuracy (%) as indicated by the True Positive Rate (Figure 4), 

they require substantial feature engineering. By decreasing the 

dimensionality, the complexity of the model is lowered. 

However, substantial information might get lost and some key 

descriptors might be removed. These limitations led to the 

development of Deep Learning approaches for automatically 

learning relevant features with the specific purpose of one-class 

classification.29,57 As such, a deep learning model was employed 

for processing the co-crystals dataset. 

 

Figure 4. Learning curves of all the implemented algorithms showing the performance of the models while the size of the training set increases. The highlighted grey area represents 

the standard deviation of each model. The validation metric used is the True Positive Rate (TPR), i.e., number of correctly predicted inliers/total size of the training set in each fold 

of the k-fold (k = 5) cross validation. It is observed that the Deep learning model (DeepSVDD) outperforms the traditional algorithms as it has higher accuracy and low standard 

deviation.  
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Τhe whole feature dimensionality is the input to the deep 

learning model concatenated in a way such that the order 

invariance is preserved (see SetTransformer in the Supporting 

Information Section 3). The way the SetTransformer extracts 

the features is key for capturing the complexity of the problem. 

SetTransformer ‘looks’ in all the features across a single 

molecule as well as in all the features of the pairing molecule. 

In that way the latent dimension holds information for the 

relation between the descriptors for each molecular pair. A 

detailed description of the way SetTransformer captures the 

relations among the descriptors is shown graphically in the 

Supporting Information (Figure S9). It can be observed that the 

deep learning model outperforms the traditional methods as 

the accuracy (%) is higher and the standard deviation is 

minimum. Moreover, there is a clearer separation of the 

labelled from the unlabelled data and thus a balance point 

between them was more easily found (Figure 2, DeepSVDD). 

The two workflows are also compared scores-wise (Figure 5). It 

can be seen that there is a good agreement (correlation) in high 

scores, whereas in the lower scores area there is not a clear 

correlation as the ensemble method gives a narrower range of 

scores and higher scores for low-scoring examples in the Deep 

case. 

In every classification problem, a threshold should be 

specified above which the datapoints that belong to the normal 

class can be found. We set that threshold at 0.7 and thus all the 

molecular pairs with scores higher than 0.7 are regarded as 

reliable inliers with a high probability to exist. That threshold 

was selected based on the good agreement between both 

workflows for scores above 0.7. Moreover, it is a good balance 

point as the majority of the labelled data receive scores above 

that threshold whereas only the top quartile of the unlabelled 

data can be found in that area. In cases where a better 

separability is achieved,58 the amount of misclassified data (FP: 

False Positives) is minimized significantly, thus the selection of 

the threshold (on 0.7) could be regarded a reasonable decision 

boundary.  

Figure 5. Correlation between the scores of the Ensemble and Deep One Class 

methods. Both workflows show a good correlation in the general distribution of 

scores, with Deep One Class covering a wider range of scores and enabling in that 

way a better separation between inliers and outliers. A significant correlation 

exists for the high score pairs, showing that both methods could be reliable in the 

high-score region.  

Predicted molecular pairs. After testing and evaluating the 

possible algorithms for one class classification, the better 

performing method was employed for the final decision on the 

ranking. Taking into consideration not only the better accuracy 

of the deep approach, but also that there was no need for 

extensive feature engineering, the better separation of the 

labelled and unlabelled data and the clearer decision boundary, 

the final ranking is based on the deep learning method. 

As our training dataset consists of many co-crystals with one 

aromatic solvent (i.e., benzene or toluene) and one highly 

branched molecule (i.e., molecules with nonlinear backbone), it 

is expected that the top scored pairs will follow the same trend. 

As shown in Figure S14 the two top scored predictions are those 

between toluene and two of the most highly branched 

molecules of the ZINC15 list. As the purpose of the model is to 

learn the underlying patterns on the labelled dataset and then 

detect molecular pairs with similar patterns in the unlabelled 

dataset, that scoring is quite reasonable. If we want to remove 

the solvents and look at other high-score subsets, we can 

perform a search under different constraints, such as for finding 

the higher scored combinations i) after removing the one ring 

molecules, ii) after removing both the one-ring molecules and 

molecules with heteroatoms and iii) when looking at the good 

combinations containing one of the eight starting PAHs. 

Detailed tables containing high-ranking pairs of possible 

categories of interest with their scores can be found in 

Supporting Information (Tables S5-S11). The popularity 

(frequency) of the co-formers forming high-scored pairs is also 

measured by counting the number of times each co-former 

appears in the pairs of the top quartile. The most frequent co-

formers in their higher scored pairs are presented in Figure 6. 

As shown the co-formers that appear more frequently in the 

predicted dataset are pyrene, benzophenanthrene, perylene 

and acenaphthylene. 

Model Interpretability. The reliability of any machine learning 

model is enhanced when the model’s decisions are related to 

physical properties. Following the traditional one class 

classification workflow, the features associated with the final 

predictions are already known after the extensive feature 

engineering process. On the other hand, an understanding 

about the features that played a key role in the deep learning 

approach is a more challenging task, as the complexity of the 

model is higher. Using the Shapley Analysis, the feature weights 

are expressed as Shapley values. A detailed description of the 

Shapley workflow can be found in the Supporting Information. 

To this end, features that play a key role in the scoring for the 

deep learning approach are retrieved and analysed. The aim of 

this process is to identify molecular properties or characteristics 

that might provide a chemical understanding to the model’s 

decisions and assist the experimental screening process. As for 

many of the Dragon descriptors it is hard to extract a physical 

meaning, the correlations among the most significant 

descriptors with those that are more general and 

understandable are calculated. 
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Figure 6. Molecular pairs formed by the most popular co-formers as predicted 

using deep learning approach. Pyrene was identified as the most popular co-

former as the majority of the possible pyrene co-crystals were assigned with high 

scores. The arrows indicate the direction of higher score (vertical arrow) and 

higher popularity (horizontal arrow).  

According to Shapley analysis, the most important features 

that the inliers have in common and dominate the decisions are 

related to the descriptors B06[C-C], ATS6i, B08[C-C], 

ChiA_Dz(p), Eig06_AEA(dm) and SpMin5_Bh(s). Whereas, 

B06[C-C] and B08[C-C] can be easily related to the molecular 

length, as they describe the topological distance between two 

carbon atoms, i.e., the presence of connected carbon atoms at 

specific positions on a molecular graph, the other descriptors 

are not directly related to a molecular property, For that reason, 

their physical meaning is extracted after calculating the 

correlations between them and the other Dragon descriptors, 

that are higher than 75% (Table S13). Interestingly, they are 

highly correlated with more general and easily accessible 

molecular properties. These chemically meaningful descriptors 

refer to i) electronic properties, such as the sum of first 

ionization potentials (Si), sum of atomic Sanderson 

electronegativities (Se), sum of atomic polarizabilities (Sp) ii) 

molecular size, such as McGowan volume (Vx), sum of atomic 

van der Waals volumes (Sv), iii) molecular shape, regarding the 

molecular branching (Ram, eta_B), iv) polarity (Pol, SAtot) and 

v) molecular weight (MW). The correlations and a more detailed 

description of these descriptors are summarized in Supporting 

Information (Table S13). Interestingly, these descriptors are 

also relevant to the majority of the extracted descriptors after 

the feature engineering process (Table S2 and S13). 

The relationship among some of the important 

interpretable descriptors in the molecular pairs is illustrated in 

Figure 7 and Figures S22-S26 for both the labelled and the 

unlabelled datasets. It should be noted that the distribution 

trend of the labelled and unlabelled dataset can change 

according to the studied descriptor. In Figure 7a, the 

dominating trends on the labelled dataset can be observed with 

darker orange color indicating the densest area with more 

molecular combinations. Two main areas are extracted from 

the labelled dataset. The first area includes molecular pairs 

where both molecules have low values of the same property, 

e.g., in the Polarity plot the area 0<Pol<60, where both 

molecules could have similar values. The second area includes 

molecular pairs with higher difference on their property values, 

i.e., when one molecule has a low value of one descriptor then 

the pairing molecule has a higher value for the same descriptor, 

complementing the first molecule. This observation is also 

verified by the UMAP visualization of the dataset (Figure 7c, see 

also Euclidean distance and 2D visualization section in 

Methods), where the two discrete areas are captured. In the 

UMAP plot the smaller cluster to the bottom left represents the 

area in which molecules with similar values are found, the two 

synthesized co-crystals 1 and 2 (vide infra) are located in this 

area. This observation does not apply for all the available 

descriptors (see Figure S35). These observations are also 

compared with a previous study by Fabian that focused on the 

CSD co-crystal dataset.40 Fabian’s statistical analysis of the data 

at that time concluded that the majority of co-crystals in CSD 

(CSD, version 5.29, November 2007) are formed by molecules 

of similar size and polarity.40  

Our analysis shows a more complex scenario. Size, shape 

and polarity, identified as important factors of co-

crystallization, have similar property values only in the low 

value region, in agreement with Fabian’s conclusions. However, 

in the high value regions the trend drastically changes; 

molecules having high size, shape and polarity values tend to 

pair with molecules having low values of these parameters. It 

should be noted that Fabian had also observed and chosen not 

to focus on the smaller subset where the co-formers are 

dissimilar due to their lack of relevance for his domain of focus, 

i.e. pharmaceutical co-crystals and predominantly hydrogen-

bonding ones. Our study needed to consider the dissimilar pairs 

as in PAHs co-crystals feature dissimilarity is common. 

Interestingly, our machine-learning modelling approaches were 

capable of taking into account a more complex relationship 

between descriptors, so it wasn't necessary to simplify the 

analysis to just one subset of the co-crystal dataset in terms of 

descriptor space. As shown in Figure 7, the distribution of 

property values in the high scoring pairs (inliers) in the 

unlabelled dataset (Figure 7b) are predicted to follow the same 

patterns at the labelled dataset (Figure 7a) indicating that the 

deep learning model effectively learnt the trends of the labelled 

dataset and was able to score the unlabelled dataset based on 

those trends. 

Page 10 of 18Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
D

ec
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

2/
8/

20
20

 9
:1

1:
27

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D0SC04263C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D0SC04263C


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 11  

Please do not adjust margins 

Please do not adjust margins 

 

Figure 7. a) Scatterplots showing the distribution of representative descriptors among the molecular pairs on the labelled dataset, extracted from CSD. The plotted descriptors are 

those identified as the most general and highly correlated to the descriptors extracted using the Shapley analysis (see Model Interpretability and section 7 in the Supporting 

Information). b) The distribution of the same descriptors for the unlabelled data is shown. Blue circles represent the whole unlabelled dataset extracted from ZINC15 (21736 points) 

and yellow-orange represent the top quartile of the unlabelled data having scores above 0.7 and are regarded as inliers. It can be clearly seen that the predicted inliers follow the 

distribution of the labelled dataset, especially in the densest area. This is an indication that the deep learning model can effectively learn the trends of the labelled data and is able 

to score the unlabelled data based on the significant patterns of the labelled data (training set). The white square and white circle denote the two experimentally synthesized co-

crystals (see Experimental section in Methods and In-silico Prediction and Experimental Realization section in Results). Both synthesized co-crystals lie into the densest area regarding 

the polarity and electronic descriptors. c) UMAP 2D illustration of the labelled dataset containing the extracted from CSD co-crystals and the projection of 1 and 2 to the known co-

crystal space. The datapoints are colored according to the absolute difference of the descriptors identified as important. It can be observed that the whole dataset consists of two 

main areas: one area in which the molecular pairs have molecules with similar properties, i.e., shape, polarity and electronegativity, in which 1 and 2 belong and a second area 

involves molecular pairs with significant difference in these properties.  

The dominating features as expressed with global Shapley 

values can give a general picture of the dataset. However, it 

should be noted that a better understanding for specific groups 

of pairs that might be of interest can be attained when focusing 

on them explicitly. The advantage of using Shapley values is that 

local explanations are given to each individual molecular pair or 

to a subset of interest among the molecular pairs. As a case 

study, the pyrene-cocrystal family is investigated, aiming to 

extract some general patterns about the important molecular 

characteristics that drive a good match for co-crystal formation 

with pyrene (Figure S21). The dominating features in the known 

co-crystals with pyrene are presented in Figure S21. It was 

found that the existence of heteroatoms such as oxygen and/or 

nitrogen groups on various topological distances, as indicated 

by the B03[C-O], B02[C-O], B02[C-N] and B05[C-N] descriptors 

or the existence of halogen atoms as indicated by the X% 

descriptor ( Figure S21) play a key role in the assignment of high 

scores in these combinations. Furthermore, the aromaticity as 

represented by the ARR descriptor was a factor that contributed 

to high scores. 

The key findings from the model interpretation and feature 

analysis can be summarized below:  

i) Shape, Size and Polarity were detected as important factors 

for co-crystallization, which is in accordance with previous 

understanding about the co-crystals of CSD. However, Fabian’s 

observations are relevant only for low values of these 

properties. We observe that there are no cases in the labelled 
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data and in the inlier part of the unlabelled dataset where both 

molecules have very high values of polarity and/or volume. This 

could be an indication for factors prohibiting co-crystallization. 

In cases, where high polarity or volume values are assigned to 

one molecule the pairing molecule usually has a low value of 

that property. 

ii) PAH co-crystals seem to deviate from empirically established 

rules and trends observed for organic co-crystals in general. 

Thus, a deeper understanding of their properties can only be 

gained when they are studied separately. As PAHs lack 

hydrogen bonding, other types of interactions appear as 

stabilizing factors for co-crystallization. For instance, in the 

pyrene-based co-crystals the existence of O and/or N groups 

has been identified as a key parameter as the majority of 

molecules that form co-crystals with pyrene contain these 

groups. The existence of these groups can drive the formation 

of C-H…N, C-H…O and C-H…X (X= halogen groups) which will 

probably stabilize the co-crystal formation. 

iii) There is not a ‘magic’ descriptor or set of some descriptors 

that can directly predict co-crystallization. The synergy among 

many descriptors will led to a successful combination. The more 

parameters, and the more the relationships among them, that 

are taken into consideration, the more reliable the predictions 

we can attain. This is the reason the implementation of the 

appropriate ML tools could save significant amount of time and 

guide the synthetic work, as this is the only way where the 

relationship among a large number of properties is 

simultaneously considered.  

iv) The selection of pairs for co-crystallization screening is a 

challenging task. However, when there is a certain category of 

interest, we can extract the important features that dominate 

the known co-crystals and then select for experimental 

screening molecules that both have high score (as the score is 

based on the interaction among all the known descriptors) and 

some of the properties that are extracted as important. It 

should be noted that a pair of molecules might have a good 

score and good values of a property of interest but not give a 

successful result as a property that is not considered from the 

model is affecting the experiment, e.g., the solubility of the 

molecules in several solvents is not considered in the ML model 

at the moment.  

Molecular Ratios Prediction. An important parameter that 

should be taken into consideration in co-crystals design is the 

stoichiometry of the co-formers. The molecular ratio is going to 

affect the crystal packing and thus contribute to possible 

materials properties. To this end, the labelled co-crystals 

dataset was further tested for molecular ratio prediction. The 

molecular ratio of all the combinations was extracted during the 

labelled dataset construction (See Methods). The dominating 

ratio in the dataset is 1:1 as shown in Figure 8, resulting in a 

highly biased dataset towards the molecular ratios. The 

problem setting was adjusted for performing binary 

classification and investigated whether the molecular ratio is 

going to be 1:1 or higher. We assigned label ‘0’ to all the 

molecular pairs having 1:1 ratio and ‘1’ otherwise. The problem 

was solved using SMOTE technique for balancing the two 

classes of the dataset such that they have equivalent amount of 

data having 1:1 ratios and data having ratios different to 1:1. 

 

Figure 8. Barcharts illustrating the molecular stoichiometry on the reported (left, 

labelled dataset) and on the predicted (right, inliers) compounds of the co-crystal 

dataset. It can be observed that the dominating ratio is 1:1, resulting in a highly 

imbalanced dataset towards molecular ratios.  

The labelled dataset was split into a training and a test set 

with the latent representation being the input to a binary 

classifier. The model showed strong predictive power, with 

accuracy on both the training and test sets of about 94 % and 

no overfitting on the training data (Figure S19). The same model 

was then implemented for predicting the molecular ratios in the 

inlier pairs. The high accuracy of the ratio prediction on the 

unlabelled dataset were further verified by the experimental 

results. The ratio of compound 1 was predicted to be different 

from 1:1 and indeed the ratio of the synthesized co-crystal was 

found 1:2. Furthermore, the ratio of compound 2 was predicted 

to be 1:1 and likewise it was found to be 1:1 experimentally. 

In-silico Prediction and Experimental Realization. To narrow 

down the selection of potential co-formers from those 

identified using the single class classifier model, we chose 

pyrene as a fixed component because both the existing data 

(i.e., CSD database) and the model output reveal its popularity 

and versatility as a co-former, i.e., pyrene can co-crystalize with 

a diverse range of molecules forming high score pairs. The total 

207 possible pyrene-containing co-crystals identified by the 

single class classifier model (Figure 9) were narrowed down to 

a subset of 29 pairs where the second co-former has zero 

examples of known co-crystals with any other molecule (blue 

points in Figure 9). Pareto optimization (see Methods and 

Supporting Information in section 8) was used to identify the 

most suitable candidate co-formers for experimental 

investigation by simultaneously optimizing i) the highest 

predicted score of the pyrene co-crystals and ii) the highest 

Tanimoto similarity with the well-known acceptor molecule 

7,7,8,8-tetracyanoquinodimethane (TCNQ), which is 

extensively studied for its interesting electronic properties both 

in the crystalline form and as a co-crystal.21,26,59–65 From the 

Pareto front (Figure 9 green line) 1-4 are identified as the 

optimal candidates and 5 is the highest scoring co-former off 

the Pareto front. 
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Figure 9. Scatterplot illustrating the selection criteria for the experimental 

screening process. Pareto optimization was implemented having as the main task 

the optimization of two objectives, i) the score of the deep learning model and ii) 

the Tanimoto similarity to TCNQ. Each point represents a molecule that could be 

used as the second co-former in pyrene co-crystals. Red empty circles stand for 

molecules that are already known to form co-crystals in the CSD, whereas 

molecules represented with filled blue circles have zero reported co-crystals. The 

molecules selected and experimentally tested are highlighted in green circles. 1-4 

are on the pareto front and 5 is the highest scoring co-former off the Pareto front. 

6 is an outlier.  

Out of the Pareto optimal candidates, pyrene-6h-

benzo[c]chromen-6-one (1) and pyrene-9,10-

dicyanoanthracene (2) (Figure 9) have been successfully 

isolated as co-crystals (See Experimental Section for the 

synthetic details and Figure 10 and Figure 11) with 1 and 2 being 

the first examples of co-crystals containing 6h-

benzo[c]chromen-6-one and 9,10-dicyanoanthracene as co-

formers. 

The next Pareto optimal candidates for experimental 

investigation were pyrene-1,2,3,4,-tetrahydrophenanthrene-4-

one (3), pyrene-1-vinyl-naphthalene (4) and pyrene-9-

phenylanthracene (5) (Figure 9). However, 3, 4 and 5 did not 

lead to any new co-crystals with pyrene when following an 

analogous synthetic procedure to that of 1 and 2. While 3, 4 and 

5 could be seen as potential negative results, and could be fed 

back in to the model to improve its predictive power, it should 

be specified that more rigorous screening of the crystallization 

conditions is required. The current machine learning model 

does not take into consideration all possible chemical factors 

that might affect the reaction outcome (e.g., solubility of the co-

formers). For instance, working with 5 we noticed that the 

physical form of 1-vinyl-naphthalene is liquid at room 

temperature and shows low miscibility with pyrene under the 

conditions tested. Following a different synthetic approach and 

using 1-vinyl-naphthalene and/or pyrene in excess might be a 

successful way towards the predicted co-crystal. 

We considered it important to also test combinations that 

were predicted as outliers where the co-formers have 

numerous reported co-crystals. The pair pyrene-triphenylene 

(6, outlier score 0.0, Figure 9) satisfies these criteria, since 

pyrene has 130 examples of known co-crystals and triphenylene 

has 20 reported examples in the CSD database, but the pair 

(pyrene-triphenylene) is not known as a co-crystal. Following a 

similar synthetic procedure using dichloromethane (a common 

solvent choice for the formation of known pyrene-containing 

and triphenylene-containing co-crystals) as described for 1 and 

2 (See Experimental section in Methods), did not lead to any 

new phases. Nonetheless, for 6 a more rigorous screening of a 

wider range of experimental conditions should be tested. We 

recognize that six examples do not provide statistically 

significant evidence to fully validate the model experimentally. 

However, this initial experimental screening was performed for 

the exemplification of the model and it is noteworthy that two 

novel co-crystals with high scores were synthesized. 
Finally, our study plays a key role in the expansion of 

knowledge around co-crystallization as it points that the 

existence of heteroatoms (such as oxygen and/or nitrogen), the 

shape of the co-formers and the extent of branching are the 

most dominating structural factors that synthetic chemists 

should take in consideration when working in the formation of 

pyrene based co-crystals. 

Description of Crystal Structures. The detailed crystallographic 

data for co-crystal 1 and 2 are listed in Table S15 in the 

Supporting Information. Pyrene-6h-benzo[c]chromen-6-one co-

crystal (1) (CCDC ref. 2014577) shows a 1:2 stoichiometry of 

pyrene to 6h-benzo[c]chromen-6-one, notably verifying what 

was predicted by the one class classification approach (i.e., 1 is 

predicted in a higher than 1:1 ratio). 1 has a complex packing, 

stabilized by both π-π stacking and T-shape interactions (Figure 

10 and S27-S28), as unveiled taking advantage of Aromatics 

Analyser tool embedded in Mercury.66 Its structure can be 

classified as γ-type, where infinite stackings of the 6h-

benzo[c]chromen-6-one molecules are alternated by ribbons of 

pyrene molecules in a A-BB-A motif. 

Pyrene-9,10-dicyanoanthracene co-crystal (2) (CCDC ref. 

2014576) crystallizes with a 1:1 stoichiometry confirming the 

predicted ratio (i.e., in 2, the stoichiometric ratio of pyrene and 

9,10-dicyanoanthracene was predicted to be 1:1). 2 can be 

classified as a γ-type structure with each infinite stack consisting 

of alternating pyrene and 9,10-dicyanoanthracene molecules 

(Figure 11 and S29-S32). Weak C-H…N lateral interactions 

between i) molecules of pyrene and 9,10-dicyanoanthracene 

and ii) molecules of 9,10-dicyanoanthracene, stabilize the 

stacks (Figure 11a and S29). 

Structural Comparison with crystal structures in CSD. After the 

successful synthesis of 1 and 2, a comparison with the already 

known co-crystals was performed. 1 and 2 are the first examples 

of co-crystals containing 6h-benzo[c]chromen-6-one and 9,10-

dicyanoanthracene as co-formers. For this reason, the crystal 

structures of 1 and 2 were initially compared to the pyrene-

based co-crystals found in the CCDC database, specifically to the 

130 reported entries (the list of pyrene co-crystal and their 

structural details can be found in Table S16 and Figure S33 of 

SI). The majority of the pyrene co-crystals, together with 1 and 
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Figure 10. a) Portion of the crystal packing of 1. Horizontal axis, c; vertical axis, a. Atom color code: carbon, grey; oxygen, red; hydrogen, light grey. The displacement ellipsoids are 

drawn at 50% probability level with the hydrogen atoms showed in the ball and stick mode for clarity. The weak C-H…π interactions between neighbouring molecules are represented 

as dashed light blue lines, C-H…O the interactions as dashed brown lines and the distances between 6h-benzo[c]chromen-6-one dimers are represented as dashed green lines. b) and 

c) representation of the -type crystal packing between the pyrene (highlighted with yellow color) and 6h-benzo[c]chromen-6-one (highlighted with red color) molecules.  

Figure 11. a) Portion of the crystal packing of 2 viewed in perspective along the [010] direction. Horizontal axis, c; vertical axis, a. The displacement ellipsoids are drawn at 50% 

probability level with the hydrogen atoms shown in the ball and stick mode for clarity. Atom color code: carbon, grey; nitrogen, blue; hydrogen, light grey. The weak C-H…N lateral 

interactions between neighbouring molecules are represented as dashed green lines, the distances between the centroids (orange spheres) of pyrene and 9,10-dicyanoanthracene 

molecules are represented as dashed orange lines. b) and c) Representation of -type flattened herringbone crystal packing between the pyrene (highlighted with yellow color) and 

9,10-dicyanoanthracene (highlighted with blue color) molecules. 

2, belong to the same cluster in the UMAP 2D visualization of the 

labelled dataset (Figure S34-35 of SI), namely the one characterized 

by similar properties of shape, polarity and electronegativity as 

found in the model interpretation (see Figure 7). Interestingly, both 

1 and 2 adopt the γ-type motif, a complex arrangement where both 

stacking and T-shape interactions coexist. This occurrence is in 

contrast to what is reported for the 130 pyrene-based co-crystals 

(see Figure S33 in SI), which usually crystallize in herringbone or β-

type packing, 58% and 34% respectively. Hence, using one class 

classification approach to predict new materials allowed us not only 

to identify new co-formers and to synthesize two new co-crystals, 

but also to explore and to enlarge the rare subgroup (~ 8%) of γ-type 
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pyrene co-crystals. Our attention then moved to the most similar 

known co-crystals. To do that the Euclidean distance (i.e., the 

distance between two vectors in the Euclidean space) between the 

vectors of the synthesized pairs and the vectors of the known 

molecular pairs in the labelled dataset was calculated. The resulting 

closest known pairs are presented in Figures S36 of SI. 1 is compared 

to the eight most similar co-crystals in the CSD database (Table S17 

and Figures S36 in SI). 67–72 Contrary to 1, all eight compounds are in 

a 1:1 stoichiometry with the two co-formers and have simpler 

packing motifs than 1 (Figure 10). In particular, they are 

characterized by A…B…A π…π stacking prompting to γ-type67–71 or β-

type 69,71,72 motifs (see Table S17 for the main interaction distances). 

As in 1, lateral C-H…O interactions are observed in all the studied 

compounds (Table S17 in the SI). In line with 1, the structural motifs 

of 2 have been compared to the most similar co-crystals in the CSD 

database (Table S18 in SI).73–79 All eight co-crystal examples found are 

in a 1:1 stoichiometry and show a γ-type or β-type packing motif. 

Moreover, C-H…N or C-H…O lateral stabilizing interactions (see Table 

S18 in the SI for the main interaction distances) can be observed in 

the compounds. We can notice that all the co-crystals identified as 

the closest in Euclidean space are characterized by the same main 

interactions (i.e., γ-stacking and C-H…N/C-H…O lateral interactions) of 

1 and 2. 

Conclusions.  

We have proposed a general framework for tackling some of the 

limitations that application of Machine Learning in materials 

science is currently facing. Instead of assuming the availability 

of densely and uniformly sampled data, we focus our attention 

on identifying the most effective way to handle imbalanced 

datasets. Given the relative abundance of data available in 

existing structural databases, the use of machine learning is 

very attractive to provide effective prediction for properties 

relating to the solid-state. The drawback here is that the existing 

databases constructed of published literature typically only 

include positive results, with scientists very rarely publishing 

such clear details of experiments that did not work. This means 

that, from a machine learning perspective, only one class (i.e., 

the positive outcome) is well defined by the data. Recent 

research from a range of groups has attempted to tackle this 

unbalanced data problem for prediction problems like co-

crystallization,11,40 solvate formation80,81 and 

crystallisability.82,83 In general, these groups have attempted to 

get around the problem by using either sparse or somewhat 

unreliable negative data from alternative sources to produce a 

trained model. Our work illustrates that one class classification 

can overcome these limitations and learn how to effectively 

describe a certain class of interest, showing the potential to 

significantly advance many areas of chemical research. 

As such, we highlight the implementation of one class 

classification as a methodology for dealing with the ‘only 

positive data’ challenge in materials design. We report as a case 

study the prediction of new molecules which have not 

previously been recognised as co-formers in the unique and 

limited class of materials, the π-π interconnected co-crystals. In 

the attempt to improve our understanding about one class 

classification, a broad overview about the current methods and 

concepts is given. The problem is initially investigated using 

traditional one class classification algorithms in lower 

dimensions after extensive feature engineering. Further on, we 

demonstrate that by using a Deep One Class approach, the 

manual feature engineering could be avoided and we can not 

only achieve higher accuracy, but also the incorporation of 

more feature interactions among the co-formers. In this way, all 

the features that might lead to the formation of stable co-

crystals are taken into consideration and the relationships 

among them are extracted. Co-crystallization emerges as a 

difficult task for both computational predictions and 

experimental screening, particularly for cases of limited strong 

directional forces that could give a strong indication for a 

successful outcome. In our contribution, we show that the 

implementation of the appropriate data mining strategy 

combined with the extraction of a reliable dataset can leverage 

the synthetic attempts and lead to the successful discovery of 

new materials. Moreover, an in-depth understanding of the 

machine learning model with a rationale about the predictions 

is sought after for advancing our knowledge on the chemical 

factors that favour co-crystal formation. 

Currently, many steps towards explainability of machine 

learning models have been made. Therefore, for a 

computational strategy to be reliable it is important to 

incorporate interpretability for rationalizing the predictions. 

SHAP calculations were carried out for interpreting the scoring 

of the deep learning model by assigning feature weights. 

Consequently, a better understanding of the features that 

dominate the known molecular pairs is gained and meaningful 

information regarding the characteristics of the molecules that 

can relate to π-π stacking is extracted. Shape, size and polarity 

were detected as important factors for co-crystallization, which 

is in accordance with previous understanding about the co-

crystals of CSD. However, our analysis reveals a more complex 

scenario, where co-crystallization is feasible for molecules 

having similar low values of these properties or coupling 

molecules with low and high values of the same feature. 

Overall, it can be concluded that the rules that dominate the co-

crystal formation are far more complex than just some general 

properties and many parameters should be taken into 

consideration. 

The computational strategy followed is able to successfully 

extract the patterns that dominate the known co-crystals and 

predict a range of potential combinations showing similar 

trends with the labelled data. Therefore, the number of 

experiments as well as the time frame required to obtain new 

compounds can be significantly reduced by focusing on co-

formers with high scores and possible interesting properties. A 

realistic picture of the single class applicability is demonstrated 

by the identification of two molecules that have not previously 

been recognized as co-formers. The co-formers of 1 and 2 are 

characterized by similar shape/size, polarity and electronic 

characteristics, confirming the ability of the model to learn and 

reproduce the key-features of the labelled dataset. 
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Interestingly, 1 and 2 crystalize in the rare γ-packing type which 

represents only the 8% among pyrene co-crystals, pointing out 

the power of our model in exploring, understanding and 

expanding the targeted labelled dataset. Overall, using the 

proposed machine learning strategy we were able to 

successfully overcome the limitations of an ‘only positive 

example’ problem in the π-π interconnected co-crystals dataset 

with the identification and experimental realization of two co-

crystals (pyrene-6h-benzo[c]chromen-6-one (1) and pyrene-

9,10-dicyanoanthracene (2)), both containing molecules which 

have not previously been reported as co-formers in the CSD. 
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