Recognizing rigid patterns of Euclidean clouds of unordered points by complete and continuous isometry invariants with no false negatives and no false positives for all possible data

Daniel Widdowson, Vitaliy Kurlin's Data Science group Materials Innovation Factory, University of Liverpool, UK

A point cloud consists of m unordered points. An isometry is any map preserving inter-point distances. In Euclidean \mathbb{R}^{n}, all isometries are compositions of translations, rotations, reflections, and form the group $\mathrm{E}(n)$.

If reflections are excluded, the resulting orientationpreserving isometries are rigid motions that form the special Euclidean group SE (n).

If m points are unordered, such clouds can be represented by m ! distance matrices obtained by m ! permutations of given points, better than any infinite-size representation but impractical.

Geometric Deep Learning experimentally outputs invariants preserved by the actions of $\mathrm{E}(3)$ or $\mathrm{SE}(3)$, optimized for specific data without using stronger invariants [1,2].
$\frac{1}{2} m(m-1)$ sorted pairwise distances between all points are generically complete: distinguish all m-point clouds in general position in \mathbb{R}^{n} [1].

Problem. Design a practical invariant $I:\{$ all unordered point clouds in $\left.\mathbb{R}^{n}\right\} \rightarrow\{a$ simpler space\} satisfying
(a) completeness: any A, B are related by rigid motion in \mathbb{R}^{n} if and only if $I(A)=I(B)$;
(b) Lipschitz continuity: there is a constant λ such that if any point of A is perturbed within its ε-neighborhood, then $I(A)$ changes by at most $\lambda \varepsilon$ in a metric d satisfying all the metric axioms below:

1) $d(I(A), I(B))=0$ if and only if clouds A, B are related by rigid motion in \mathbb{R}^{n}, 2) $d\left(I_{1}, I_{2}\right)=d\left(I_{2}, I_{1}\right)$,
2) \triangle triangle inequality: $d\left(I_{1}, I_{2}\right)+d\left(I_{2}, I_{3}\right) \geq d\left(I_{1}, I_{3}\right)$ for any invariant values;
(c) computability : I, d and a reconstruction of a cloud $A \subset$ \mathbb{R}^{n} from $I(A)$ are obtained in polynomial time in the size $|A|$ for a fixed dimension n.
For any point $p \in C$, write distances $d_{1} \leq \cdots \leq d_{m-1}$ to all points in $C-\{p\}$. The Pointwise Distance Distribution [2] is the unordered set of all such distance rows in the $m \times(m-1)$-matrix $\operatorname{PDD}(C)$.

New invariants [3]: the Simplexwise Centered Distribution (SCD) solves the problem for all n-dimensional clouds $C \subset$ \mathbb{R}^{n}. Firstly, shift the center of C to the origin $p_{0}=0$ in \mathbb{R}^{n}.
$\operatorname{SCD}(C)$ is the unordered set of pairs $\left[D\left(A^{\prime}\right), M\left(C ; A^{\prime}\right)\right]$ for all subsets $A \subset C$ of permutable points p_{1}, \ldots, p_{n-1}, $D\left(A^{\prime}\right)$ is the distance matrix of $A^{\prime}=A \cup\{0\}$, where $M\left(C ; A^{\prime}\right)$ is the $(n+1) \times$ $(m-n+1)$-matrix with permutable columns for points $q \in C-A$, each consisting of n distances $\left|q-p_{i}\right|$, sign of determinant on the vectors $q-p_{i}$ for $i=0, \ldots, n-1$.
[1] M.Boutin, G.Kemper. Advances in Applied Math. 32 (2004), 709-735.
[2] D.Widdowson, V.Kurlin. Resolving the data ambiguity for periodic crystals. Proceedings of NeurIPS 2022.
[3] D.Widdowson, V.Kurlin.
Proceedings of CVPR 2023.

Details of continuous complete isometry invariants in the CVPR 2023 paper
A new area of Geometric Data Science develops continuous parametrizations and computable metrics on geographic-style maps of data objects modulo practical equivalences. This work studies finite clouds of unordered points under Euclidean isometry. The past work in NeurIPS 2022 established the Crystal Isometry Principle (CRISP): all real periodic crystals live in one Crystal Isometry Space continuously extending Mendeleev's table of elements.

Figure 1: Left: the key concepts of Geometric Data Science (GDS) are equivalence, metric, continuity, and computability. Right: a hierarchy of isometry invariants from ordered pairwise distances to the SDD (strongest known in metric spaces) and SCD (proved complete in \mathbb{R}^{n}).

Metric space with a distance d. Let C be a cloud of m unordered points. Let $A=$ $\left(p_{1}, \ldots, p_{h}\right) \subset C$ be an ordered subset of $1 \leq h<m$ points. Let $D(A)$ be the triangular distance matrix whose entry $D(A)_{i, j-1}$ is $d\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq h$, all other entries are filled by zeros. Any permutation $\xi \in S_{h}$ acts on $D(A)$ by mapping $D(A)_{i j}$ to $D(A)_{k l}$, where $k \leq l$ is the pair of indices $\xi(i), \xi(j)-1$ written in increasing order. The $h \times(m-h)$-matrix $R(C ; A)$ is formed by $m-h$ permutable columns of distances from $q \in C-A$ to p_{1}, \ldots, p_{h}. Any $\xi \in S_{h}$ acts on rows of $R(C ; A)$. The Relative Distance Distribution $\operatorname{RDD}(C ; A)$ is the equivalence class of $[D(A), R(C ; A)]$ up to permutations $\xi \in S_{h}$. The Simplexwise Distance Distribution $\operatorname{SDD}(C ; h)$ is the unordered set of $\operatorname{RDD}(C ; A)$ for all unordered h-point subsets $A \subset C$.
Euclidean cloud $C \subset \mathbb{R}^{n}$. Fix the center of mass $p_{0}=\frac{1}{m} \sum_{p \in A}$ at the origin $0 \in \mathbb{R}^{n}$. In $R(C ;\{0\} \cup A)$ for $q \in C-A$, to each column of n Euclidean distances $\left|q-p_{0}\right|, \ldots,\left|q-p_{n-1}\right|$, add the sign of the determinant of the $n \times n$ matrix consisting of the vectors $q-p_{0}, \ldots, q-p_{n-1}$. Any $\xi \in S_{n-1}$ permutes the first $n-1$ rows of the resulting $(n+1) \times(m-n+1)$-matrix $M(C ;\{0\} \cup A)$ and multiplies every sign in the $(n+1)$-st row by $\operatorname{sign}(\xi)$. The Oriented Centered Distribution $\operatorname{OCD}(C ; A)$ is the equivalence class of $[D(A \cup\{0\}), M(C ; A \cup\{0\})]$ up to permutations $\xi \in S_{n-1}$ of points of A. The Simplexwise Centered Distribution $\operatorname{SCD}(C)$ is the unordered set of $\operatorname{OCD}(C ; A)$ for all $\binom{m}{n-1}$ unordered $(n-1)$-point subsets $A \subset C$.

$S \subset \mathbb{R}^{2}$ consists of 4 vertices $(\pm 1,0),(0, \pm 1)$ of a square. For each 1 -point subset $A=\{p\} \subset S$, the distance matrix $D(A \cup\{0\})$ on two points is one number 1. The matrix $M(S ; A \cup\{0\})$ has $m-n+1=3$ columns and $n+1=3$ rows.
$M\left(S ;\binom{p_{1}}{0}\right)=\left(\begin{array}{ccc}\sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 \\ - & + & 0\end{array}\right)$. Then $\operatorname{SCD}(S)$ is one $\mathrm{OCD}=\left[1,\left(\begin{array}{ccc}\sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 \\ - & + & 0\end{array}\right)\right]$.
Theorem 4.7: $\operatorname{SCD}(C)$ is a complete invariant for all n-dimensional clouds $C \subset \mathbb{R}^{n}$ of m unordered points computable in time $O\left(m^{n} /(n-4)!\right)$, so any clouds C, C^{\prime} are related by $\mathrm{SO}(n)$ rotation around their common center of mass if and only if the Earth Mover's Distance $\operatorname{EMD}\left(\operatorname{SCD}(C), \operatorname{SCD}\left(C^{\prime}\right)\right)=0$. Any mirror reflection changes only the signs of $\operatorname{SCD}(C)$. This EMD is Lipschitz continuous, needs time $O\left((n-1)!\left(n^{2}+m^{1.5} \log ^{n} m\right) l^{2}+l^{3} \log l\right), l=\operatorname{size}(\mathrm{SCDs})$.

