Recognizing rigid patterns of Euclidean clouds of unordered points by complete and continuous isometry invariants with **no false negatives** and **no false positives** for all possible data

Daniel Widdowson, *Vitaliy Kurlin's* Data Science group Materials Innovation Factory, University of Liverpool, UK

A **point cloud** consists of m unordered points. An **isometry** is any map preserving inter-point distances. In Euclidean \mathbb{R}^n , all isometries are compositions of translations, rotations, reflections, and form the group $\mathrm{E}(n)$.

If reflections are excluded, the resulting *orientation-preserving isometries* are rigid motions that form the special Euclidean group SE(n).

If *m* points are *unordered*, such clouds can be represented by *m*! distance matrices obtained by *m*! permutations of given points, better than any infinite-size representation but impractical.

Geometric Deep Learning experimentally outputs *invariants* preserved by the actions of E(3) or SE(3), optimized for specific data without using *stronger* invariants [1,2].

 $\frac{1}{2}m(m-1)$ sorted pairwise distances between all points are *generically complete*: distinguish all *m*-point clouds in *general* position in \mathbb{R}^n [1].

Problem. Design a practical invariant I: {all unordered point clouds in \mathbb{R}^n } \rightarrow {a simpler space} satisfying

- (a) **completeness**: any A, B are related by rigid motion in \mathbb{R}^n if and only if I(A) = I(B);
- (b) **Lipschitz continuity**: there is a constant λ such that if any point of A is perturbed within its ε -neighborhood, then I(A) changes by at most $\lambda \varepsilon$ in a metric d satisfying all the metric axioms below:
- 1) d(I(A), I(B)) = 0 if and only if clouds A, B are related by rigid motion in \mathbb{R}^n ,
- 2) $d(I_1, I_2) = d(I_2, I_1),$
- 3) \triangle triangle inequality: $d(I_1, I_2) + d(I_2, I_3) \ge d(I_1, I_3)$ for any invariant values;
- (c) **computability** : I, d and a reconstruction of a cloud $A \subset \mathbb{R}^n$ from I(A) are obtained in polynomial time in the size |A| for a fixed dimension n.

For any point $p \in C$, write distances $d_1 \leq \cdots \leq d_{m-1}$ to all points in $C - \{p\}$. The *Pointwise Distance Distribution* [2] is the unordered set of all such distance rows in the $m \times (m-1)$ -matrix PDD(C).

New invariants [3]: the *Sim*plexwise Centered Distribution (SCD) solves the problem for all *n*-dimensional clouds $C \subset$ \mathbb{R}^n . Firstly, shift the center of *C* to the origin $p_0 = 0$ in \mathbb{R}^n . SCD(*C*) is the unordered set of pairs [D(A'), M(C; A')] for all subsets $A \subset C$ of permutable points p_1, \ldots, p_{n-1} , D(A') is the distance matrix of $A' = A \cup \{0\}$, where M(C; A') is the $(n + 1) \times$ (m - n + 1)-matrix with permutable columns for points $q \in C - A$, each consisting of *n* distances $|q - p_i|$, sign of determinant on the vectors $q - p_i$ for i = 0, ..., n - 1.

- [1] M.Boutin, G.Kemper. Advances in Applied Math. 32 (2004), 709-735.
- [2] D.Widdowson, V.Kurlin. Resolving the data ambiguity for periodic crystals. Proceedings of NeurIPS 2022.
- [3] D.Widdowson, V.Kurlin. Proceedings of CVPR 2023.

Details of continuous complete isometry invariants in the CVPR 2023 paper

A new area of **Geometric Data Science** develops continuous parametrizations and computable metrics on geographic-style maps of data objects modulo practical equivalences. This work studies finite clouds of unordered points under Euclidean isometry. The past work in NeurIPS 2022 established the *Crystal Isometry Principle* (CRISP): all real periodic crystals live in one *Crystal Isometry Space* continuously extending Mendeleev's table of elements.

Figure 1: **Left**: the key concepts of Geometric Data Science (GDS) are equivalence, metric, continuity, and computability. **Right**: a hierarchy of isometry invariants from ordered pairwise distances to the SDD (strongest known in metric spaces) and SCD (proved complete in \mathbb{R}^n).

Metric space with a distance d. Let C be a cloud of m unordered points. Let $A = (p_1, \ldots, p_h) \subset C$ be an ordered subset of $1 \leq h < m$ points. Let D(A) be the triangular distance matrix whose entry $D(A)_{i,j-1}$ is $d(p_i, p_j)$ for $1 \leq i < j \leq h$, all other entries are filled by zeros. Any permutation $\xi \in S_h$ acts on D(A) by mapping $D(A)_{ij}$ to $D(A)_{kl}$, where $k \leq l$ is the pair of indices $\xi(i), \xi(j) - 1$ written in increasing order. The $h \times (m-h)$ -matrix R(C; A) is formed by m-h permutable columns of distances from $q \in C-A$ to p_1, \ldots, p_h . Any $\xi \in S_h$ acts on rows of R(C; A). The Relative Distance Distribution RDD(C; A) is the equivalence class of [D(A), R(C; A)] up to permutations $\xi \in S_h$. The Simplexwise Distance Distribution SDD(C; h) is the unordered set of RDD(C; A) for all unordered h-point subsets $A \subset C$.

Euclidean cloud $C \subset \mathbb{R}^n$. Fix the center of mass $p_0 = \frac{1}{m} \sum_{p \in A}$ at the origin $0 \in \mathbb{R}^n$. In $R(C; \{0\} \cup A)$ for $q \in C - A$, to each column of n Euclidean distances $|q - p_0|, \ldots, |q - p_{n-1}|$, add the sign of the determinant of the $n \times n$ matrix consisting of the vectors $q - p_0, \ldots, q - p_{n-1}$. Any $\xi \in S_{n-1}$ permutes the first n-1 rows of the resulting $(n+1) \times (m-n+1)$ -matrix $M(C; \{0\} \cup A)$ and multiplies every sign in the (n+1)-st row by $\operatorname{sign}(\xi)$. The Oriented Centered Distribution $\operatorname{OCD}(C; A)$ is the equivalence class of $[D(A \cup \{0\}), M(C; A \cup \{0\})]$ up to permutations $\xi \in S_{n-1}$ of points of A. The Simplexwise Centered Distribution $\operatorname{SCD}(C)$ is the unordered set of $\operatorname{OCD}(C; A)$ for all $\binom{m}{n-1}$ unordered (n-1)-point subsets $A \subset C$.

$$S \subset \mathbb{R}^2$$
 consists of 4 vertices $(\pm 1,0)$, $(0,\pm 1)$ of a square. For each 1-point subset $A = \{p\} \subset S$, the distance matrix $D(A \cup \{0\})$ on two points is one number 1. The matrix $M(S; A \cup \{0\})$ has $m - n + 1 = 3$ columns and $n + 1 = 3$ rows.

$$M(S; \begin{pmatrix} p_1 \\ 0 \end{pmatrix}) = \begin{pmatrix} \sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 \\ - & + & 0 \end{pmatrix}$$
. Then $SCD(S)$ is one $OCD = [1, \begin{pmatrix} \sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 \\ - & + & 0 \end{pmatrix}]$.

Theorem 4.7: SCD(C) is a complete invariant for all n-dimensional clouds $C \subset \mathbb{R}^n$ of m unordered points computable in time $O(m^n/(n-4)!)$, so any clouds C, C' are related by SO(n) rotation around their common center of mass if and only if the Earth Mover's Distance EMD(SCD(C), SCD(C')) = 0. Any mirror reflection changes only the signs of SCD(C). This EMD is Lipschitz continuous, needs time $O((n-1)!(n^2+m^{1.5}\log^n m)l^2+l^3\log l)$, l =size(SCDs).