Software demo: HoPeS
Cloud segmentation and skeletons

Vitaliy Kurlin, http://kurlin.org
Microsoft Research Cambridge
and Durham University, UK

The secondment at Microsoft
is supported by the EPSRC
Impact Acceleration Account
2D cloud software: HoPeS

Input: \(n \) points \(C \subset \mathbb{R}^2 \) with real coordinates

Time: guaranteed \(O(n \log n) \) in the worst case

Output: persistent hole boundaries, skeletons
Computer Graphics application

Problem: complete all closed contours or paint all regions that they enclose (a *segmentation*).

A user drawing a sketch on a tablet might be happy with our fast automatic ‘best guess’: *make contours closed* so that I can paint areas (a scale is easy to find, but we can’t ask for it).
Cloud segmentation into regions

Proved: contours are close to the ground truth.

From a cloud to a filtration

Def: the α-offset of a cloud $C \subset \mathbb{R}^2$ is the union of closed balls $C^\alpha = \bigcup_{p \in C} B(p; \alpha)$ of a radius α.

Filtration $C = C^0 \subset \cdots \subset C^\alpha \subset \cdots \subset C^\infty = \mathbb{R}^2$.

Counting holes in C may be easy

The graph G has H_1 of rank 36, hence any ε-sample C of G will probably have 36 holes.

How can we see that there are 36 holes in C?
Using stability of persistence

We can find the widest diagonal gap separating 36 points from the rest of persistence diagram.
An initial segmentation of \(C \)

Acute Delaunay triangle is a ‘center of gravity’.

We attach all adjacent non-acute triangles to get an initial segmentation on the right hand side.
Harder than counting cycles

Initial regions \leftrightarrow red dots in PD (too many).

We should merge 36 regions of high persistence with all remaining regions of lower persistence.
Merging initial regions

Building $\mathcal{PD}\{C^\alpha\}$, we keep adjacency relations of merged regions to enrich persistence info.
Hierarchy of segmentations

A user can choose to get exactly k regions by choosing 2nd widest diagonal gap in PD1 etc.
Parameterless skeletonisation

Def: Homologically Persistent Skeleton of a cloud C is $\text{HoPeS}(C) = \text{MST}(C) \cup$ critical edges representing all dots in 1D persistence of $\{C^\alpha\}$.
Properties of $\text{HoPeS}(C)$

Optimality: for any scale α, reduced subgraph $\text{HoPeS}(C; \alpha)$ is *shortest* among all graphs $G \subset C^\alpha$ inducing isomorphisms in H_0, H_1.

Reconstruction: if C is an ε-sample of a good G, derived $\text{HoPeS}_{k,l}(C) \sim G$ are 2ε-close to G.

Recognising visual markers

Shop barcodes are not readable by humans.

We can make visual markers like Egyptian hieroglyphs readable by humans and robots.

VK, CAIP’15: Computer Analysis of Images and Patterns
Fast simplification of images

1st widest gap gives contours of 2 large peppers

2nd widest gap gives 2 more small peppers.
Summary: C++ code HoPeS

- \(time \ O(n \log n) \) for any input cloud \(C \subset \mathbb{R}^2 \)
- persistent structures directly on data with guarantees: boundary contours, Homologically Persistent Skeleton HoPeS
- first persistence software \textit{in England}

Papers and C++ code are at http://kurlin.org.

\textit{Collaborations and applications are welcome!}