TOPOLOGY
AND ITS APPLICATIONS

Basic embeddings into a product of graphs

V. Kurlin ${ }^{1}$
Department of High Geometry and Topology, Faculty of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia

Received 17 June 1997; received in revised form 29 September 1997 and 26 May 1998

Abstract

The notion of a basic embedding appeared in research motivated by Kolmogorov-Arnold's solution of Hilbert's 13th problem. Let K, X, Y be topological spaces. An embedding $K \subset X \times Y$ is called basic if for every continuous function $f: K \rightarrow \mathbb{R}$ there exist continuous functions $g: X \rightarrow \mathbb{R}$, $h: Y \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)+h(y)$ for any point $(x, y) \in K$. Let T_{i} be an i-od.

Theorem. There exists only a finite number of 'prohibited' subgraphs for basic embeddings into $\mathbb{R} \times T_{n}$. Consequently, for a finite graph K there is an algorithm for checking whether K is basically embeddable into $\mathbb{R} \times T_{n}$. Our theorem is a generalization of Skopenkov's description of graphs basically embeddable into \mathbb{R}^{2}, and our proofs is a (non-trivial) extension of that one. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Singular set; Basic embedding; Horrid vertex; Awful vertex; Defect
AMS classification: Primary 54C25; 54F50, Secondary 05C10; 05C05; 51H99; 57M15; 46J10

1. Introduction

Hilbert conjectured in his 13th problem that there are continuous functions of three variables which are not representable as a composition of continuous functions of two variables. Arnold and Kolmogorov proved in [2,4] that every continuous function of several variables defined on a compact subset of \mathbb{R}^{2} admits a representation as a sum of $2 n+1$ continuous functions of one variable.

Let X, K, Y be topological spaces. An embedding $K \subset X \times Y$ is called basic (and denoted by $K \subset_{b} X \times Y$) if for every continuous function $f: K \rightarrow \mathbb{R}$ there exist continuous functions $g: X \rightarrow \mathbb{R}, h: Y \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)+h(y)$ for any point $(x, y) \in K$. This condition can be reformulated in terms of function spaces as follows [10]. Given a

[^0]map $\phi: K \rightarrow X \times Y$, consider ϕ as a product of two maps $\alpha: K \rightarrow X$ and $\beta: K \rightarrow Y$. Let the linear superposition operator $\Phi: C(X) \oplus C(Y) \rightarrow C(K)$ be given by
$$
\Phi(g, h)(x)=g(\alpha(x))+h(\beta(x)) .
$$

Then an embedding is basic if and only if Φ maps $C(X) \oplus C(Y)$ onto $C(K)$.
The weaker version of Arnold-Kolmogorov's theorem is that the n-dimensional cube is basically embeddable in $\mathbb{R}^{2 n+1}$. The following theorem describing the compacta basically embeddable in \mathbb{R}^{m} for $m \geqslant 3$ is proved in [6] and [9]: a compactum X is basically embeddable in \mathbb{R}^{m} if and only if $\operatorname{dim} X \leqslant(m-1) / 2$. Trivially, X is basically embeddable in \mathbb{R} if and only if X is topologically embeddable there. The description of pathwiseconnected compacta basically embeddable in \mathbb{R}^{2} in terms of prohibited subcontinua is given in [8]. In a partial, case there are characterizations of finite graphs basically embeddable in \mathbb{R}^{2} in terms of prohibited subgraphs and universal trees in [3, Theorem 1.2]. We can reformulate these criteria as follows: "A finite graph K is basically embeddable into \mathbb{R}^{2} if and only if K has no bad vertices (or, equivalently, $\delta(K)=0$)" (see necessary definitions below). But the general problem of characterizing the compacta basically embeddable in \mathbb{R}^{2} is still open.

Basic embeddings into a product of dendrites were studied in [10, Theorem 4.6, p. 29]. Let T_{i} be an i-od (or a star with i rays). The purpose of this paper is to describe finite graphs basically embeddable into $\mathbb{R} \times T_{n}$. Moreover we obtain some necessary and sufficient conditions for basic embeddability of graphs into $T_{m} \times T_{n}$ for $m \geqslant 3$. This is a solution of some problems from the preliminary version of [3].

Let us make some necessary definitions. Call a vertex (i.e., either an endpoint or a branched point) of a finite graph K horrid if its degree is greater than 4 . Call a vertex of K awful if its degree equals 4 and it has no hanging edges. Call a vertex of K bad if it is either awful of horrid. Call a bad vertex of $K d r y$ if it has a hanging edge. Clearly, a dry vertex is a horrid vertex. The defect of K is the sum $\delta(K)=\left(\operatorname{deg} A_{1}-2\right)+\cdots+\left(\operatorname{deg} A_{k}-2\right)$, where A_{1}, \ldots, A_{k} are the bad vertices of K. Further we suppose $n \geqslant 3$.

Theorem 1.1. A finite (not necessarily connected) graph K is basically embeddable into $\mathbb{R} \times T_{n}$ if and only if K is a tree and either $\delta(K)<n$ or $\delta(K)=n$ and K has a dry vertex.

Corollary 1.2. A finite graph K is basically embeddable into $\mathbb{R} \times T_{3}$ (or, equivalently, $T_{2} \times T_{3}$) if and only if either of the two following equivalent conditions holds:
(a) (cf. [5]) K does not contain any of the graphs of Fig. 1;
(b) K is contained in W_{n} for some n (see Fig. 2).

Now we shall construct universal graphs W_{n} for basic embeddings into $\mathbb{R} \times T_{3}$. Let U_{1} be T_{3}, A a hanging edge of U_{1} and a the hanging endpoint of A. The graph U_{n+1} is obtained from U_{n} by branching every hanging edge except A. Let V_{n} be the graph obtained by gluing one hanging edge to every non-hanging vertex of U_{n}. The vertex a is called the root of U_{n} and V_{n}. Let W_{n} be the wedge of four copies of V_{n} and an arc such that the roots of V_{n} attach to one endpoint of the arc.

a)

b)

c)

d)

e)

f)

g)

h)

Fig. 1.
Corollary 1.3. There exists only a finite number of 'prohibited' subgraphs for basic embeddings into $\mathbb{R} \times T_{n}$. Consequently, for a finite graph K there is an algorithm for checking whether K is basically embeddable into $\mathbb{R} \times T_{n}$.

Theorem 1.4. If a finite (not necessarily connected) graph K is basically embeddable into $T_{m} \times T_{n}(m \geqslant 3)$, then K is a tree and one of the two following conditions holds:
(1.4.1) either $\delta(K)<m+n-2$, or $\delta(K)=m+n-2$ and K has a dry vertex;
(1.4.2) all bad vertices of K are split into two collections a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{l} such that

$$
\begin{aligned}
& \left(\operatorname{deg} a_{1}-2\right)+\cdots+\left(\operatorname{deg} a_{k}-2\right) \leqslant n, \\
& \left(\operatorname{deg} b_{1}-2\right)+\cdots+\left(\operatorname{deg} b_{l}-2\right) \leqslant m .
\end{aligned}
$$

Moreover, if the first (second) weak inequality is equality, then a_{1} (b_{1}, respectively) is dry. In particular, $\delta(K) \leqslant m+n$.

If condition (1.4.1) holds $m \geqslant 2$, then K is basically embeddable into $T_{m} \times T_{n}$.
The proof of Theorems 1.1 and 1.4 is based on the reduction of the property of being a basic embedding to a pure geometric condition [10, Lemma 2.23(iii), p. 14], and on an extension of techniques from [8]. It seems that Theorem 1.4 is unnaturally more complicated than Theorem 1.1. But there is the following graph K basically embeddable into $T_{3} \times T_{3}$, for which (1.4.1) does not hold. Let K be a disjoint union of two pentods, i.e., $\delta(K)=6$. Fix a hanging edge $C(D)$ in a triod $T_{3}\left(T_{3}^{\prime}\right)$ with the center $c(d$, respectively).

Fig. 2.
Then the subset $C \times T_{3}^{\prime} \cup T_{3} \times D \subset T_{3} \times T_{3}^{\prime}$ consists of two 'books' with three 'pages' pasting together. Basically embed each pentod into its 'book', as in Corollary 1.2, and such that its projections on $c \times D$ and $C \times d$ are mutually disjoint. Then we have a basic embedding $K \subset T_{3} \times T_{3}^{\prime}$. It should be quite trivial after the reading of Section 5 . This example shows an essential difference between the cases $m=2$ and $m>2$. The paper is organized as follows. In Section 2 we introduce the main tools of studying basic embeddings and prove some easy lemmas. In Section 3 we prove necessity in Theorems 1.1 and 1.4 using these lemmas. We split the proof of sufficiency in Theorems 1.1 and 1.4 into three parts. The first part is a description of an admissible tree (Section 4). The second part is the basic embeddability of an admissible tree (Theorem 5.1 in Section 5). The third part is the proof that each connected tree satisfying condition (1.4.1) is an admissible tree (Theorem 6.1 in Section 6). Since the conditions of Theorem 1.1 are the partial case of (1.4.1) (for $m=2$), then sufficiency in Theorems 1.1 and 1.4 will be proved. Thus, we can formulate a criteria for basic embeddings into $\mathbb{R} \times T_{n}$ as follows: "A finite connected graph K is basically embeddable into $\mathbb{R} \times T_{n}$ if and only if K is an admissible tree". In Section 7 we prove Corollaries 1.2 and 1.3. In Section 8 we formulate some interesting conjectures for basic embeddings into a product of finite graphs. All constructions in the paper are simplified for basic embeddings into $\mathbb{R} \times T_{n}$. At the beginning of Sections 3-6 we make some remarks for this partial case.

2. Preliminaries

Let X, Y be finite graphs. By p_{x} and p_{y} we denote the projections $p_{x}: X \times Y \rightarrow X$, $p_{y}: X \times Y \rightarrow Y$. For $Z \subset X \times Y$ let

$$
E(Z)=\left\{z \in Z: \operatorname{card}\left(Z \cap\left(p_{x} z \times Y\right)\right)>1 \text { and } \operatorname{card}\left(Z \cap\left(X \times p_{y} z\right)\right)>1\right\} .
$$

A sequence $\left\{a_{1}, \ldots, a_{n}\right\} \subset X \times Y$ is called an array, if for each $i, a_{i} \neq a_{i+1}$, and $p_{x}\left(a_{i}\right)=$ $p_{x}\left(a_{i+1}\right)$ for odd i and $p_{y}\left(a_{i}\right)=p_{y}\left(a_{i+1}\right)$ for even i. The proof of [10, Lemma 2.23(iii), p. 14], [8, GC, p. 33] holds for a more general case:

GC 2.1. An embedding $K \subset X \times Y$ is not basic if and only if
(2.1.1) $E^{n}(K) \neq \emptyset$ for each n, or
(2.1.2) for each n there exists an array of n points in K.

By c and d we denote the centers of T_{m} and T_{n}, respectively.
Basic non-embeddability of S into $T_{m} \times T_{n}$ (cf. [10, proof of Proposition 2.21, p. 15]). Suppose to the contrary that $S \subset_{b} T_{m} \times T_{n}$. Since S is a finite graph, then $p_{x} S$ ($p_{y} S$) either is a join of at most $m(n)$ arcs, containing the vertex $c(d$, respectively) or is an arc. Evidently, for any point $a \in \operatorname{Int} p_{x} S$ (Int $\left.p_{y} S\right)$ we have that $\left(a \times T_{n}\right) \cap S\left(\left(T_{m} \times a\right) \cap S\right.$, respectively) consists of more than one point. Hence $S-E(S)$ consists of at most $m+n$ points. A simple inductive argument shows that for each $i>0, E^{i}(S)$ is a cofinal set in S, and in particular is nonempty, contradicting GC 2.1.

An arc A is called horizontal (vertical) if $p_{y} A$ ($p_{x} A$, respectively) is a point. An arc is called a compression arc if it is either horizontal or vertical.

Definition 2.2. Suppose that $K \subset X \times Y$ and $I \subset K(J \subset K)$ is a horizontal (vertical, respectively) arc. A compression generated by I, J is the map

$$
q=(r \times \operatorname{id} Y) \circ(\operatorname{id} X \times s): X \times Y \rightarrow\left(X / p_{x} I\right) \times\left(Y / p_{y} J\right)
$$

where $r: X \rightarrow X / p_{x} I$ and $s: Y \rightarrow Y / p_{y} J$ are the projections.
Compression Lemma 2.3. Let K, X, Y be finite graphs, $K \subset_{b} X \times Y$ and I, J and q be as above. Then
(2.3.1) $q K \subset_{b}\left(X / p_{x} I\right) \times\left(Y / p_{y} J\right)$;
(2.3.2) $\left.q\right|_{K-(I \cup J)}$ is a homeomorphism.

Proof. The proof of (2.3.1) and (2.3.2) is analogous to [8, §2, "proof of Compression Lemma"]. With the following alterations: "the segment $[a, b]$ is parallel to x-coordinate (y-coordinate) axis" to " $[a, b]$ is a horizontal (vertical, respectively) arc", and 'arc I orthogonal to arc J ' to 'either both $p_{x} I$ and $p_{y} J$ or both $p_{x} J$ and $p_{y} I$ are points'.

3. Proof of necessity in Theorems 1.1 and 1.4

The structure of the proof is as follows. See Diagram 1. Necessity in Theorems 1.1 and 1.4 in the simple case (when all awful vertices of K lie in Γ) follows from (3.1.1) and (3.1.2) in Proposition 3.1. The general case follows from the simple one, Reduction Lemma 3.2 and Compression Lemma 2.3. We prove (3.1.1) and (3.1.3) analogously using Induction Lemma 3.3. We prove (3.1.2) and Reduction Lemma 3.2 analogously using (3.1.3). In Proposition 3.1 we shall consider basic embeddings of a finite tree K into $G \times H$, where G and H are subpolyhedra of T_{m} and T_{n}, respectively, and such that some products of hanging vertices of G and H correspond to some non-hanging vertices of K.

Our proof is based on two ideas. The first idea is used in (3.1.1) and (3.1.3), which are generalizations of [8, "Basic non-embeddability of C_{4} "] and [8, "the cross lemma"], respectively. The second idea is used in (3.1.2) and Reduction Lemma 3.2, which are generalizations of [8, "Basic non-embeddability of C_{4} "]. So, before reading the proofs below it will be helpful to look at the corresponding proofs in [8].

By Γ denote the singular set of $T_{m} \times T_{n}$. Evidently, $\Gamma=c \times T_{n} \cup T_{m} \times d$ for $m, n \geqslant 3$ and $\Gamma=c \times T_{n}$ for $m=2, n \geqslant 3$. Finally, Γ is a graph. Consider $T_{m} \times T_{n}$ as the union of $I \times J$, where $I \subset T_{m}, J \subset T_{n}$ are 'rays', i.e., arcs, with ends c and d. From [8, Theorem 1] follows that all horrid vertices of K lie in Γ (actually, no neighborhood of a horrid vertex in K can be basically embeddable into $I \times J$).

Definition (G, T_{j}-structure on $\mathbb{R} \times T_{n}$). Let $G \subset \mathbb{R}$ be a disjoint union of arcs and $H=$ $T_{j} \subset T_{n}$ be a substar. Let g_{1}, \ldots, g_{s} be arbitrary distinct points of G. Then ($\left.G, T_{j},\left\{g_{i}\right\}\right)$ is called a G, T_{j}-structure on $\mathbb{R} \times T_{n}$. Let $M\left(G, T_{j},\left\{g_{i}\right\}\right)$ be the sum of j and degrees of points g_{1}, \ldots, g_{s} in G.

Evidently, each point g_{i} has degree 2 in \mathbb{R}. Hence $M\left(\mathbb{R}, T_{j},\left\{g_{i}\right\}\right)=j+2 s$. For the necessity in Theorem 1.1 we may omit cases 2, 3 below. And also in Induction Lemma 3.3,

Diagram 1.
if $H=T_{j}$, then $H^{\prime}=H-p_{y} \stackrel{\circ}{B}=T_{j-1}$. A G, T_{j}-structure on $\mathbb{R} \times T_{n}$ is the partial case of a G, H-structure ($G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}$) on $T_{m} \times T_{n}$, where $H=T_{j},\left\{h_{j}\right\}=\emptyset$.

Definition (G, H-structure on $T_{m} \times T_{n}$). Let $G \subset T_{m}, H \subset T_{n}$ be subpolyhedra containing c, d, respectively. Let $g_{1}, \ldots, g_{s}\left(h_{1}, \ldots, h_{t}\right)$ be arbitrary distinct points of $G(H$, respectively) such that $g_{i}=c, h_{j}=d$ simultaneously for some i, j is impossible. Then ($\left.G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)$ is called a G, H-structure on $T_{m} \times T_{n}$. Let $M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)$ be the sum of degrees of points g_{1}, \ldots, g_{s} in G and points h_{1}, \ldots, h_{t} in H. If $g_{i} \neq c$ for each i ($h_{j} \neq d$ for each j), then we add to M degree of c in G (d in H, respectively).

Obviously, the degree of each point $g_{i} \neq c$ in $G\left(h_{j} \neq d\right.$ in H, respectively) is either 0,1 , or 2 . The center c of $T_{m}\left(d\right.$ of $\left.T_{n}\right)$ has degree $m(n)$ and each other point $g_{i}\left(h_{j}\right)$ has degree 2 in T_{m} (T_{n}, respectively). Hence if $g_{i} \neq c, h_{j} \neq d$ for each i, j, then $M\left(T_{m}, T_{n},\left\{g_{i}\right\},\left\{h_{j}\right\}\right)=m+n+2(s+t)$. In the opposite case, $M\left(T_{m}, T_{n},\left\{g_{i}\right\},\left\{h_{j}\right\}\right)=$ $m+n+2(s+t-1)$.

Proposition 3.1. Let $T_{m} \times T_{n}$ have a G, H-structure ($G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}$). Let $K \subset T_{m} \times T_{n}$ be a finite tree. Suppose that all awful vertices of K lie in Γ. Let R be the set of vertices in K containing all bad vertices of K. Suppose that R is split into two sets $\left\{a_{1}, \ldots, a_{s}\right\}$ and $\left\{b_{1}, \ldots, b_{t}\right\}$ such that

$$
\left(K, a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right) \subset_{b}\left(G \times H, g_{1} \times d, \ldots, g_{s} \times d, c \times h_{1}, \ldots, c \times h_{t}\right) .
$$

Let $N=s+t$ be the number of vertices in R. Further we assume the defect of K is calculated over all vertices from R (not only bad). Then the following conditions hold:
(3.1.1) $\delta(K)+2 N \leqslant M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)$;
(3.1.2) if vertices $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}$ have no hanging edges, then

$$
\delta(K)+2 N<M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right),
$$

hence if $\delta(K)+2 N=M$, then there is a vertex from R with a hanging edge;
(3.1.3) if $\delta(K)+2 N=M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)>0$, then there exists a compression arc $A \subset K$ containing a vertex from R.

Reduction Lemma 3.2. Let $K \subset T_{m} \times T_{n}$ be a finite tree, $X \subset T_{m}, Y \subset T_{n}$ be subpolyhedra. If $K \subset_{b} X \times Y$, then there exist compressions q_{1}, \ldots, q_{k} such that all awful vertices of $K^{\prime}=q_{k}\left(\ldots\left(q_{1}(K)\right) \ldots\right)$ lie in Γ and $\delta\left(K^{\prime}\right) \geqslant \delta(K)$.

Proof of necessity in Theorems 1.1 and 1.4. Suppose that all awful vertices of K lie in Γ (simple case).

Case 1 (the partial case $m=2$). For presenting the main ideas, we first prove the simple case for $m=2$. Then necessity in Theorem 1.1 follows from Propositions (3.1.1) and (3.1.2) for $G=T_{2}, H=T_{n}$ as follows. Let R be the set of all bad vertices in K. Let $g_{1} \times d, \ldots, g_{s} \times d$ be the images of all bad vertices of K under the given basic embedding $K \subset \subset_{b} \times T_{n}$. Since $M\left(\mathbb{R}, T_{n},\left\{g_{i}\right\}\right)=n+2 s, N=s$, then by (3.1.1) and (3.1.2) either $\delta(K)<n$ or $\delta(K)=n$ and K has a dry vertex.

Now we prove the simple case for $m, n \geqslant 3$. Let $g_{1} \times d, \ldots, g_{s} \times d, c \times h_{1}, \ldots, c \times h_{t}$ be the images of all bad vertices of K under the given basic embedding $K \subset_{b} T_{m} \times T_{n}$. Since $M\left(T_{m}, T_{n},\left\{g_{i}\right\},\left\{h_{j}\right\}\right) \leqslant m+n+2 N$, then by (3.1.1) $\delta(K) \leqslant m+n$.

Case 2 ($c \times d$ corresponds to a bad vertex). Suppose there is a bad vertex $r=c \times d$ of K. Consequently, either $g_{i}=c, a_{i}=r$ for some i or $h_{j}=d, b_{j}=r$ for some j. Hence $M\left(T_{m}, T_{n},\left\{g_{i}\right\},\left\{h_{j}\right\}\right)=m+n+2(N-1)$, i.e., (1.4.1) holds by (3.1.1) and (3.1.2).

Case 3 ($c \times d$ does not correspond to a bad vertex). Let a_{1}, \ldots, a_{k} and $b_{1} \ldots, b_{l}$ be all bad vertices of K, images of which lie in $\left(T_{m}-c\right) \times d$ and $c \times\left(T_{n}-d\right)$, respectively. Evidently, there are stars $T_{\operatorname{deg}} a_{1} \amalg \cdots \amalg T_{\operatorname{deg} a_{k}} \subset K$ basically embedded into m 'books' $\left(C^{\prime}-c\right) \times T_{n}$, where C^{\prime} is a hanging edge of T_{m}. By definition we have $M\left(T_{m}-c, T_{n},\left\{g_{i}\right\}, \emptyset\right)=n+2 s$ and by (3.1.1) for $T_{\operatorname{deg} a_{1}} \cup \cdots \cup T_{\operatorname{deg} a_{k}} \subset\left(T_{m}-c\right) \times T_{n}$

$$
\left(\operatorname{deg} a_{1}-2\right)+\cdots+\left(\operatorname{deg} a_{k}-2\right) \leqslant n .
$$

Moreover, by (3.1.2) when the equality holds, one vertex from $\left\{a_{i}\right\}$ (let it be a_{1}) is a dry vertex. Analogously we have

$$
\left(\operatorname{deg} b_{1}-2\right)+\cdots+\left(\operatorname{deg} b_{l}-2\right) \leqslant m
$$

and, when the equality holds, b_{1} is a dry vertex. So, (1.4.2) holds.
Case 4 (general case). In the general case (when not all awful vertices of K lie in Γ) by Reduction Lemma 3.2 there exist compressions q_{1}, \ldots, q_{k} such that all awful vertices of $K^{\prime}=q_{k}\left(\ldots\left(q_{1}(K)\right) \ldots\right)$ lie on Γ and $\delta\left(K^{\prime}\right) \geqslant \delta(K)$. Then necessity in Theorems 1.1 and 1.4 follows from the simple case for K^{\prime}.

Proof of (3.1.1) and (3.1.3). Further, we briefly denote $M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)$ by M. Induction on M. Base $M=0$ in (3.1.1): R is the set of $2 N$ isolated points. Hence $\delta(K)=-2 N$. Base $M=1$ in (3.1.3): vertices from R have not more than one edge in K. Hence $\delta(K) \leqslant 1-2 N$. The inductive step is Induction Lemma 3.3 below.

Induction Lemma 3.3. Under the conditions of Proposition 3.1 we have that there exist a subgraph $L \subset K$ and an arc $B \subset L$ containing a vertex from R such that $\delta(L-\AA)=$ $\delta(K)-1$ and either for $G^{\prime}=G-p_{x} \AA, H^{\prime}=H$ or for $G^{\prime}=G, H^{\prime}=H-p_{y} \AA$ the following condition hold:
(3.3.1) $\left(L-\stackrel{\circ}{B}, a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right) \subset_{b}\left(G^{\prime} \times H^{\prime}, g_{1} \times d, \ldots, g_{s} \times d, c \times h_{1}, \ldots\right.$, $\left.c \times h_{t}\right) ;$
(3.3.2) $M\left(G^{\prime}, H^{\prime},\left\{g_{i}\right\},\left\{h_{j}\right\}\right)=M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)-1$.

Proof. By GC 2.1 there exists a maximal n for which $L=E^{n}(K) \cup R$ contains a neighborhood of every point from R in K. Evidently, $\delta(L)=\delta(K)$. Then for some point $r \in R, E(L)$ does not contain any neighborhood of r in K. So, there exists an edge of K with end r, say A, and a sequence $\left\{r_{i}\right\} \in A-E(L)$ converging to r. By definition of E we have either $L \cap\left(p_{x} r_{i} \times T_{n}\right)=r_{i}$ or $L \cap\left(T_{m} \times p_{y} r_{i}\right)=r_{i}$ for each i. We may assume that $L \cap\left(p_{x} r_{i} \times T_{n}\right)=r_{i}$ for each i. Since $E(L)$ is a finite graph, then $E(L)$ contains a finite number of connected components. Then $E(L)$ is split by graphs $p_{x} r_{i} \times T_{n}$ into a finite
number of connected components. Hence there exists a subarc $B \subset A$ containing r such that $L \cap\left(p_{x} B \times T_{n}\right)=B$. So, (3.3.1) holds for $G^{\prime}=G-p_{x} \stackrel{\circ}{B}$ and $H^{\prime}=H$. Since the arc B contains the vertex $r \in R$, then (3.3.2) holds and $\delta\left(L-\AA{ }_{B}\right)=\delta(L)-1=\delta(K)-1$.

Proof of (3.1.2). We shall prove (3.1.2) by induction on M (see Proposition 3.1). Bases $M=1, M=2$ in (3.1.2) are obvious (see the bases in the proof of (3.1.1) and (3.1.3)). Suppose to the contrary that $\delta(K)+2 N=M$. Then by (3.1.3) for K there is an inclusion maximal compression arc I_{1} with endpoints $r \in R$ and $a \in K$. Take the compression q_{1} generated by I_{1}. By (2.3.1) we have $q_{1} K \subset_{b}\left(G / I_{1}\right) \times H$. By (2.3.2) only the following cases are possible:
(1) $a \notin R$ is a vertex of K;
(2) $a \in R$;
(3) $q_{1} K \cong K$.

Case 1. In the first case, since a is non-hanging, then $\operatorname{deg} q_{1} r$ in $q_{1} K$ is greater than $\operatorname{deg} r$ in K. Hence $\delta\left(q_{1} K\right)>\delta(K)$. Also the number of all vertices in R for $q_{1} K$ equals N and

$$
M\left(G / I_{1}, H,\left\{q_{1} g_{i}\right\},\left\{q_{1} h_{j}\right\}\right) \leqslant M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right) .
$$

Then $\delta\left(q_{1} K\right)+2 N>M$ (here M is for the basic embedding $\left.q_{1} K \subset\left(G / I_{1}\right) \times H\right)$, contradicting (3.1.1).

Case 2. In the second case, since $q_{1} r=q_{1} a$, then the number of all vertices in R for $q_{1} K$ equals $N-1$ and

$$
M\left(G / I_{1}, H,\left\{q_{1} g_{i}\right\}_{g_{i} \neq a},\left\{q_{1} h_{j}\right\}_{h_{j} \neq a}\right)=M\left(G, H,\left\{g_{i}\right\},\left\{h_{j}\right\}\right)-2 .
$$

Since $(\operatorname{deg} r-2)+(\operatorname{deg} a-2)=\left(\operatorname{deg} q_{1} r-2\right)$, then we have $\delta\left(q_{1} K\right)=\delta(K)$. Then $\delta\left(q_{1} K\right)+2(N-1)=M$ (here M is for the basic embedding $\left.q_{1} K \subset\left(G / I_{1}\right) \times H\right)$ and (3.1.2) follows from the inductive hypothesis.

Case 3. In the third case $\delta\left(q_{1} K\right)=\delta(K)$. Note that we proved that the defect of a tree after a compression is not less than that at the beginning. So we may apply analogous compressions q_{2}, \ldots, q_{k}, generated by arcs I_{2}, \ldots, I_{k}, respectively. It suffices to prove that this process is finite.

Suppose there is a compression (let it be q_{1}) generated by I_{1} at $r_{1} \in R$ such that $q_{1} K$ contains a compression arc I_{2} at $r_{2} \in R$ appearing due to q_{1}, i.e., I_{1}, I_{2} are orthogonal and if I_{1} is horizontal (vertical), then

$$
\begin{array}{ll}
r_{2} \in p_{x} r_{1} \times T_{n}, & q_{1}^{-1}\left(I_{2}\right) \subset\left(p_{x} I_{1}\right) \times T_{n} \\
\left(r_{2} \in T_{m} \times p_{y} r_{1},\right. & \left.q_{1}^{-1}\left(I_{2}\right) \subset T_{m} \times\left(p_{y} I_{1}\right), \text { respectively }\right) .
\end{array}
$$

After that, suppose there is an analogous arc $I_{3} \subset q_{2} K$, and so on. If we find such arcs I_{1}, \ldots, I_{k}, then we may construct an array of $k+1$ points in K as follows.

We may assume I_{k} is horizontal. Take a point $b_{k} \in I_{k}-r_{k}$. Then b_{k}, r_{k} is the array of 2 points in $q_{k-1} K$. Since I_{k} appears due to q_{k-1}, then there is $b_{k-1} \in I_{k-1} \cap\left(T_{m} \times\right.$ $\left.p_{y}\left(q_{k-1}^{-1} b_{k}\right)\right)$. Then $q_{k-1}^{-1} b_{k}, b_{k-1}, r_{k-1}$ is the array of three points in $q_{k-2} K$, and so on.

Since the map q_{i}^{-1} preserves the orthogonality of arcs, then we find the array of $k+1$ points in K :

$$
\left\{q_{1}^{-1}\left(\ldots\left(q_{k-1}^{-1}\left(b_{k}\right)\right) \ldots\right), \ldots, q_{1}^{-1}\left(b_{2}\right), b_{1}, r_{1}\right\} .
$$

But there are no arrays of arbitrary length in K. Hence there is a constant C such that the length of the above constructed sequence of arcs I_{1}, \ldots, I_{k} is less than C. Since the number of vertices from R is N, then there are not more than $N(m+n)$ compression arcs in K. Hence we can do not more than $(N(m+n))^{C}$ compressions, i.e., our process is finite.

Proof of Reduction Lemma 3.2. Let r be an awful vertex of K such that $r \notin \Gamma$. Let C be the inclusion maximal cross in K with center r. Apply compressions q_{1}, \ldots, q_{k} to C, analogous to the proof of (3.1.2). We have either a contradiction or $q_{k}\left(\ldots\left(q_{1}(r)\right) \ldots\right) \in \Gamma$ for some k. We may iterate this procedure to each awful vertex of K that does not lie in Γ. And also, the defect of a tree after these compressions is not less than that at the beginning (see the remark in Case 3 of the proof of (3.1.2)).

4. Construction of an admissible tree

This section is organized as follows. First we construct a pre-loaded leaf. After that we define a loaded leaf using a filtration of pre-loaded leaves. Finally, we construct simple and complete admissible trees using a filtration of loaded leaves.

The following construction is simplified for Theorem 1.1. In this case we do not split satisfactory points into horizontal and vertical. In particular, in the definition of a loaded leaf we omit condition (4.2.2b). Hence we also omit the notion of the end of the loaded leaf and the order of satisfactory points in the loaded leaf. Finally, we may alter the property Φ to the following: if r_{1}, \ldots, r_{k} are all satisfactory points of a finite tree K, then $\phi\left(r_{1}\right)+\cdots+\phi\left(r_{k}\right) \leqslant n-1$. Remember that a tree basically embeddable into \mathbb{R}^{2} contains only vertices either of degree $\leqslant 3$ or of degree 4 with a hanging edge.

Definition (a leaf and its root). Take a tree L basically embeddable into \mathbb{R}^{2} with its endpoint r. Then L is called a leaf with the root r.

4.1. Definition of a pre-loaded leaf

Let I be a leaf. Take two of its hanging vertices $r, a \in I$ (i.e., endpoints) and two arbitrary sets of distinct points in the interior of edges of I (good and satisfactory points, respectively) such that these points lie in an arc $U \subset I$ with endpoints r and a (possibly $U=r=a$). Split the set of satisfactory points into horizontal and vertical. Moreover, we shall assume that r, a are satisfactory, and r is simultaneously both horizontal and vertical. For each satisfactory point $b \in I$ take an integer $\phi(b) \geqslant 0$ such that the property Φ below holds for $K=I$. Since each vertex of a leaf has either degree $\leqslant 3$ or degree 4 and a hanging edge, then, I is obtained from U by gluing to U either a hanging edge or a leaf, or both a hanging edge and a leaf at some points of U (called excellent). Then the tree I with its
excellent, good and satisfactory points, and the function ϕ is called a pre-loaded leaf. The point r is called the root of I. The point a is called the end of I (possibly $I=r=a$). For example, in Fig. 4 the pre-loaded leaf with the root $u_{0}=\alpha \times \beta$ and the end u_{2} is represented by fat lines, q is the good point, t is the excellent point. If all satisfactory points of I are horizontal (vertical), then I is called horizontal (vertical, respectively).

Property Φ.
(a) If $r_{1}=r, r_{2}, \ldots, r_{s}$ are all distinct satisfactory points of a finite tree K, then

$$
\phi\left(r_{1}\right)+\cdots+\phi\left(r_{s}\right) \leqslant m+n-3 ;
$$

(b) if a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{l} are all horizontal and vertical satisfactory points in $K-r$, respectively (for a horizontal and vertical pre-loaded leaf we have $l=0$ and $k=0$, respectively), then

$$
\phi\left(a_{1}\right)+\cdots+\phi\left(a_{k}\right) \leqslant n-1, \quad \phi\left(b_{1}\right)+\cdots+\phi\left(b_{l}\right) \leqslant m-1 .
$$

4.2. Definition of a loaded leaf

Let I_{1} be a pre-loaded leaf. Let $I_{1} \subset \cdots \subset I_{k} \subset J$ be a filtration such that the following conditions hold:
(4.2.1) I_{i+1} is obtained from I_{i} by gluing to I_{i} either a horizontal or a vertical preloaded leaf B and possibly a hanging edge H at each good vertex $b \in I_{i}-I_{i-1}$ ($I_{0}=\emptyset$) for each $i=1, \ldots, k-1$. Moreover, the root of B is the good point in I_{i+1} and also b is both an endpoint of H and the root of B; and either
(4.2.2a) J is obtained from I_{k} by gluing to I_{k} a leaf at the end of each pre-loaded leaf in I_{k}. Moreover, all satisfactory points of J_{1} are horizontal (vertical). In this case J_{1} is called horizontal (vertical, respectively); or
(4.2.2b) J is obtained from I_{k} by gluing to I_{k} a leaf at the end of each pre-loaded leaf in I_{k}, except one end a. In this case a is called the end of J_{1}. Moreover, all satisfactory points of J_{1} before a (for the definition of the order, see below) and a itself are horizontal (vertical), and other satisfactory points of J_{1} are vertical (horizontal, respectively).
Then the tree J with its excellent, good and satisfactory points, and the function ϕ such that the property Φ holds for $K=J$, is called a loaded leaf. Note that if a loaded leaf J has only one satisfactory point (obviously it is its root), then J is a leaf. Take a good point $b \in I_{i}$. Let B be the connected component of $J-b$ that is contained in $J-I_{i}$. Then the closure of B is the loaded leaf with the root b.

Definition (the order of satisfactory points in the loaded leaf). We shall define the order recursively. The order of satisfactory points in I_{1} is from the root to the end along the arc U. The satisfactory points of I_{1} in this order are the first satisfactory points in J. The order of good points in I_{1} is from the end to the root along the arc U. The next points in J are satisfactory points in the loaded leaf beginning at the first good point in I_{1} (in this
loaded leaf the order is recursively defined), and so on. The last points in J are satisfactory points in the loaded leaf beginning at the last good point in I_{1}.

For example, in Fig. 4 the order of satisfactory points in the loaded leaf embedding into $A \times B$ is as follows: $u_{0}=\alpha \times \beta, u_{1}, u_{2}, s$ (q_{1}, q_{2} are not vertices of the loaded leaf).

Definition (a bridge and its ends in the loaded leaf). The subtree in J between two neighboring satisfactory points $b_{1}, b_{2} \in I_{1}$ is called a bridge of J_{1}, and b_{1} and b_{2} are called the ends of the bridge.

Clearly, if a bridge B of J does not contain the end a of J_{1}, then all satisfactory points of B are either horizontal or vertical simultaneously.

4.3. Definition of an admissible tree

Let J_{1} be a loaded leaf. Let $J_{1} \subset \cdots \subset J_{l}=G$ be a filtration such that the following condition holds:
(4.3.1) J_{j+1} is obtained from J_{j} by gluing to J_{j} either $\phi(b)$ (if $b \neq r$ is not the end of a loaded leaf in J_{j}) or $\phi(b)+1$ (if b either is an end of a loaded leaf in J_{j} or $b=r)$ loaded leaves at each satisfactory point $b \in J_{j}-J_{j-1}\left(J_{0}=\emptyset\right)$ for each $j=1, \ldots, l-1$.
The tree G such that the property Φ holds for $K=G$ is called a simple admissible tree for $T_{m} \times T_{n}$, and the root of J_{1} is called the root of G. Take a satisfactory point $h \in G . K$ is obtained from G by gluing to G a hanging edge H at h such that h is an endpoint of H. The tree K is called a complete admissible tree for $T_{m} \times T_{n}(m \geqslant 2, n \geqslant 3)$. We shall say that a finite tree K is an admissible tree, if K is either simple or complete admissible.

5. Construction of a basic embedding

Theorem 5.1. An admissible tree is basically embeddable into $T_{m} \times T_{n}$.
Let c and d be the centers of T_{m} and T_{n}, respectively. Fix hanging edges C and D of T_{m} and T_{n}, respectively. Further, we assume that $c \times d$ is the lower left vertex of the square $C \times D$. In this section we shall construct a basic embedding of an admissible tree such that all horizontal (vertical) satisfactory points lie in $C \times d(c \times D$, respectively).

Definition (operations X_{ε} and Y_{ε}). Fix a small $\varepsilon>0$. Let $C_{\varepsilon}\left(D_{\varepsilon}\right)$ be the ε-neighborhood of c in C (of d in D, respectively). For $Z \subset T_{m} \times T_{n}$ let

$$
\begin{gathered}
X_{\varepsilon}(Z)=\left\{z \in Z: \operatorname{card}\left(Z \cap\left(p_{x} z \times T_{n}\right)\right)>1 \text { and either } p_{y} z \in D_{\varepsilon}\right. \text { or } \\
\left.\quad \operatorname{card}\left(Z \cap\left(T_{m} \times p_{y} z\right)\right)>1\right\}, \\
Y_{\varepsilon}(Z)=\left\{z \in Z: \quad \operatorname{card}\left(Z \cap\left(T_{m} \times p_{y} z\right)\right)>1 \text { and either } p_{x} z \in C_{\varepsilon}\right. \text { or } \\
\left.\quad \operatorname{card}\left(Z \cap\left(p_{x} z \times T_{n}\right)\right)>1\right\} .
\end{gathered}
$$

Fig. 3.

Definition (a strongly basic embedding). An embedding $Z \subset T_{m} \times T_{n}$ is called strongly basic (and denoted by $Z \subset_{s b} T_{m} \times T_{n}$), if there exist $\varepsilon>0$ and an integer k such that $X_{\varepsilon}^{k}(Z)=Y_{\varepsilon}^{k}(Z)=\emptyset$. Then ε is called a suitable value for the strongly basic embedding.

Let us make the following remarks. Evidently, if Z is strongly basically embeddable into $T_{m} \times T_{n}$, then Z is basically embeddable into $T_{m} \times T_{n}$. Clearly, if $Z \subset T_{m} \times T_{n}$ and $X_{\varepsilon}^{k}(Z), Y_{\varepsilon}^{k}(Z)$ are strongly basic embedded into $T_{m} \times T_{n}$ for some k and ε, then Z is strongly basic embedded into $T_{m} \times T_{n}$. Obviously, if $X \subset Y$ and Y is strongly basic embedded into $T_{m} \times T_{n}$, then X is strongly basic embedded into $T_{m} \times T_{n}$. These statements shall be used in this section.

Now we shall present the scheme of our construction. Strongly basic embeddability of a simple admissible tree follows from Lemmas 5.3-5.5 below. In Lemma 5.3, using Proposition 5.2, we embed a horizontal loaded leaf. Evidently, Lemma 5.3 remains true if we replace the horizontal loaded leaf by a vertical loaded leaf. In Lemma 5.4 we embed a loaded leaf J with the end, assuming that all satisfactory points of J before the end of J and the end itself are horizontal, and the others are vertical (cf. (4.2.2b)). Obviously, Lemma 5.4 remains true if we replace all satisfactory horizontal points of J before the end of J and the end itself by vertical, others by horizontal. In Lemma 5.5 we extend an embedding constructed in Lemma 5.4 to a simple admissible tree. Basic embeddability of a complete admissible tree follows from these lemmas and Lemma 5.6. The following constructions are simplified for basic embeddings into $\mathbb{R} \times T_{n}$. In this case, strongly basic embeddability follows only from Lemma 5.3 and Steps 2,3 in Lemma 5.5.

Proposition 5.2. Let K be a leaf, $I \cong[0,1]$ be its hanging edge (the vertex 0 is its root). Then there is a basic embedding

$$
\left(K, K-\left[0, \frac{1}{2}\right),\left[0, \frac{1}{2}\right], 0\right) \rightarrow\left([0,1]^{2},\left[\frac{1}{2}, 1\right]^{2},\left[(0,0),\left(\frac{1}{2}, \frac{1}{2}\right)\right],(0,0)\right)(\text { see Fig. } 3) .
$$

Proof. By [8, Theorem 1], $K-\left[0, \frac{1}{2}\right)$ is basically embeddable into \mathbb{R}^{2}. It follows from [8, property F, p. 40] that there is a basic embedding

$$
\left(K-\left[0, \frac{1}{2}\right), \frac{1}{2}\right) \rightarrow\left(\left[\frac{1}{2}, 1\right]^{2},\left(\frac{1}{2}, \frac{1}{2}\right)\right)
$$

The square $\left[\frac{1}{2}, 1\right]^{2}$ is called the black square of K. In Fig. 3 the black square is represented by the dashed square.

Evidently, we may assume that there are both a hanging edge and a leaf at each excellent point of an admissible tree, and also that there is a hanging edge at each good point. Further, for an arbitrary set W, if $g: W \rightarrow T_{m} \times T_{n}$ is an embedding, then by ' W ' we mean ' $g(W) \subset T_{m} \times T_{n}$ '. And also if $a, b \in K$ are two distinct points of a tree K, then by ' $a b$ ' we mean the arc in K with endpoints a, b.

Definition (the shadow). Let $W_{1}, W_{2} \subset T_{m} \times T_{n}$ be two arbitrary sets. The shadow of W_{1} is $\left(p_{x} W_{1} \times T_{n}\right) \cup\left(T_{m} \times p_{y} W_{1}\right)$. The shadow of W_{1} on W_{2} is the intersection of the shadow of W_{1} with W_{2}.

Lemma 5.3. Let J be a tree basically embeddable into \mathbb{R}^{2}. Take a hanging vertex $r \in J$ and an arbitrary set of distinct points (called satisfactory) in the interior of edges of J. Then there is a strongly basic embedding $g: J \rightarrow[0,+\infty) \times[0,+\infty)$ such that $g(r)=0 \times 0$ and all satisfactory points of J lie in $[0,+\infty) \times 0$.

Proof. Evidently, we may find in the tree J a filtration satisfying conditions (4.2.1) and (4.2.2a). Hence we may assume that J is a horizontal loaded leaf (without a function φ satisfying $\Phi)$. The example of a strongly basic embedding is shown in Fig. 4, where we alter the quadrant $([0,+\infty) \times[0,+\infty), 0 \times 0)$ to the rectangle $(A \times B, \alpha \times \beta)$.

For simplicity, in Fig. 4 we do not show the hanging edges of excellent and good points. Dashed lines show some shadows of leaves and ε-neighborhoods for strongly basic embeddings. In Steps $1-3$ below we embed J without leaves and hanging edges. The extension on leaves and hanging edges is constructed in Steps 4, 5, respectively. Fix a filtration $U \subset I_{1} \subset \cdots \subset I_{k} \subset J$ from the definition of J (see Sections 4.1 and 4.2). Let $u_{0}=r, u_{1}, \ldots, u_{l}$ be all satisfactory points of I_{1} by the order from r.

Step 1 (the 'decrease of the embedding' trick). First we construct a strongly basic embedding $g: U \rightarrow A \times B$ using the following rules (see Fig. 4):
(5.3.1) $r=\alpha \times \beta, u_{1}, \ldots, u_{l} \in A \times \beta$;
(5.3.2) u_{i} lies in $A \times \beta$ to the right of $u_{i-1}, i=1, \ldots, l$;
(5.3.3) projections under p_{y} of all excellent and good points of $u_{i-1} u_{i}$ lie in A higher than those of the $\operatorname{arcs} u_{i} u_{i+1}, \ldots, u_{l-1} u_{l}$.
Step 2 (the 'jump along the axis’ trick). Take the last good point $q \in u_{i-1} u_{i} \subset U$ by the order from r (if there is no such point, then we omit this step). Let J_{1} be the connected component of $(J-U) \cup q$ containing q. Then J_{1} is the horizontal loaded leaf with the root q. Split the hanging edge of q in J_{1} into three parts by points q_{1} and q_{2}. Extend g to $q q_{2}=q q_{1} \cup q_{1} q_{2}$ linearly so that
(5.3.4) $p_{y} q_{1} \in p_{y}\left(u_{i-1} u_{i}\right)$ lies in A higher than $p_{y} q$;

Fig. 4.
(5.3.5) $p_{x} q_{1}$ lies in $A \times \beta$ to the right of $p_{x} u$;
(5.3.6) q_{2} lies in $A \times \beta$ to the right of $p_{x} q_{1}$;
(5.3.7) the shadow of $\left(q q_{1}-q\right)$ on U and all excellent and good points of U are mutually disjoint.
Step 3 (the ' ε-decrease of the embedding' trick). Fix a suitable ε for the strongly basic embedding g on $U \cup q q_{2}$. Take two arcs $A_{0} \subset A$ and $B_{0} \subset q_{2} \times B$ with the common endpoint q_{2} so that
(5.3.8) $A_{0}-q_{2}$ lies in $A \times \beta$ to the right of $q_{2}, p_{y} B_{0} \subset B_{\varepsilon}$.

Obviously, we may assume q_{2} is a satisfactory point and q_{2} is the root of the loaded leaf $\left(J_{1}-q q_{2}\right) \cup q_{2}$. Extend g to the arc $U_{1} \subset\left(J_{1}-q q_{2}\right) \cup q_{2}$ (the first pre-loaded leaf in the loaded leaf without leaves and hanging edges) analogous to Step 1. Further, as in Step 2 we take the last good point of U_{1} in the order from q_{2}, and so on, until we embed the whole loaded leaf $\left(J_{1}-q q_{2}\right) \cup q_{2}$ (without leaves and hanging edges). Evidently,

$$
X_{\varepsilon}^{3}\left(U \cup J_{1}\right), Y_{\varepsilon}^{3}\left(U \cup J_{1}\right) \subset J_{1}-q q_{2} \subset_{s b} C \times D
$$

for some ε. Hence g is a strongly basic embedding. Clearly, the maximal suitable ε for $\left.g\right|_{U \cup J_{1}}$ is less than that for $\left.g\right|_{U}$. After that, we analogously embed loaded leaves beginning at other good points of U. So, it remains to embed leaves at excellent points and hanging edges at excellent and good points of J.

Step 4 (the embedding of leaves). For a leaf L at the excellent point $t \in J$ we take a basic embedding $g: L \rightarrow A^{\prime} \times B^{\prime}$ from Proposition 5.2, where t is the common endpoint of arcs A^{\prime}, B^{\prime} and such that
(5.3.9) all the shadows of leaves on J and all good points of J are mutually disjoint.

Since $\left.g\right|_{J}$ is strongly basic (here J has no leaves and hanging edges), then for some k, ε we have that $X_{\varepsilon}^{k}(J)$ and $Y_{\varepsilon}^{k}(J)$ (here J has all leaves and has no hanging edges) consist of some leaves basically embedded into $A \times B$ such that its projections on $A \times \beta$ and $\alpha \times B$ are mutually disjoint. Hence the extension is strongly basic.

Step 5 (the embedding of hanging edges). Embed each hanging edge as a horizontal arc so that
(5.3.10) all the shadows on J of 'black squares' and hanging edges are mutually disjoint.
As in Step 4, the extension is strongly basic.

Lemma 5.4. Let J be a tree basically embeddable into \mathbb{R}^{2}. Take two hanging vertices $r, a \in J$ (called the root and the end of J, respectively). And also take an arbitrary set of distinct points (called satisfactory) in the interior of edges of J such that all satisfactory points before a (see the definition of the order in Section 4.2) and a itself are horizontal, others are vertical. Then there is a strongly basic embedding $g: J \rightarrow C \times D$ such that $g(r)=c \times d$, all horizontal (vertical) satisfactory points of J lie in $C \times d(c \times D$, respectively) and a lies in $C \times d$ to the right of $p_{x}(J-a)$.

Proof. Evidently, we may find in the tree J a filtration satisfying conditions (4.2.1) and (4.2.2b). Hence we may assume J is a loaded leaf with the end (without a function φ satisfying $\Phi)$. Further we embed J without leaves and hanging edges. The extension on leaves and hanging edges is constructed analogous to Steps 4, 5 in Lemma 5.3. Fix a filtration $I_{1} \subset \cdots \subset I_{k} \subset J$ from the definition of J. Let $v_{0}=r, v_{1}, \ldots, v_{l}$ be all satisfactory points of I_{1} by the order from the root r. Let V_{j} be the bridge in J with endpoints v_{j-1}, v_{j}. Let the bridge V_{i+1} contain the end a (in Fig. 4, $i=1$). If $a \neq v_{i+1}$, then we may assume there is only one vertex in V_{i+1} : a good point b such that the loaded leaf in $J-I_{1}$ beginning at b contains the end a. Actually, in the opposite case we take two points $v_{i}^{\prime}, v_{i+1}^{\prime} \in I_{1}$ near b (call them satisfactory, put $\phi\left(v_{i}^{\prime}\right)=\phi\left(v_{i+1}^{\prime}\right)=0$) such that there is only one vertex b in the arc $v_{i}^{\prime} v_{i+1}^{\prime}$. Let V be the $\operatorname{arc} r v_{i} \subset I_{1}$.

Step 1 (the 'increase of the embedding' trick) (cf. Step 1 in Lemma 5.3). First we shall construct a strongly basic embedding $g: V \rightarrow C \times D$. The case $V=r$ is obvious. We linearly define g on V using the following rules (see Fig. 4):
(5.4.1) $r=c \times d$, and $v_{1}, \ldots, v_{i} \in C \times d$;
(5.4.2) v_{j} lies in $C \times d$ to the right of $v_{j-1}, j=1, \ldots, i$;
(5.4.3) projections under p_{y} of all excellent and good points of $v_{j} v_{j+1}$ lie in $c \times D$ higher than those of the $\operatorname{arcs} r v_{1}, \ldots, v_{j-1} v_{j}$.
Step 2 (the 'jump to the other axis' trick) (cf. Step 2 in Lemma 5.3). Here we extend g to bridges V_{1}, \ldots, V_{i}. Evidently, all satisfactory points of the bridges, except their ends, are vertical. Take the first good point a_{1} of $r v_{1}$ by the order from r. Let J_{1} be the connected component of $\left(J-r v_{1}\right) \cup a_{1}$ containing a_{1}. Split the hanging edge of a_{1} in J_{1} into two parts by a point a_{2}. Then $\left(J_{1}-a_{1} a_{2}\right) \cup a_{2}$ is the vertical loaded leaf beginning at a_{2}. Let ε
be a suitable value for the strongly basic embedding $\left.g\right|_{V}$. Extend g to $a_{1} a_{2}$ linearly and to $\left(J_{1}-a_{1} a_{2}\right) \cup a_{2}$ by Lemma 5.3 (for a vertical branch) so that
(5.4.4) a_{2} lies in $c \times D$ higher than $p_{y} a_{1}$;
(5.4.5) $p_{y}\left(J_{1}-a_{1} a_{2}\right) \subset p_{y}\left(r v_{1}\right)$ lies in $c \times D$ higher than a_{2};
(5.4.6) $p_{x}\left(J_{1}-a_{1} a_{2}\right) \subset C_{\varepsilon}$;
(5.4.7) the shadow of $J_{1}-a_{1} a_{2}$ on $r v_{1}$ and all excellent and good points of $r v_{1}$ are mutually disjoint.
Evidently,

$$
X_{\varepsilon}^{2}\left(V \cup J_{1}\right), Y_{\varepsilon}^{2}\left(V \cup J_{1}\right) \subset J_{1}-a_{1} a_{2} \subset_{s b} C \times D
$$

for some ε. Hence g is a strongly basic embedding. Clearly, the maximal suitable ε for $\left.g\right|_{V \cup J_{1}}$ is less than that for $\left.g\right|_{V}$. After that, we analogously embed vertical loaded leaves beginning at other good points of V. So, we have now defined the strongly basic embedding on $V_{0}=V_{1} \cup \cdots \cup V_{i}$.

Step 3 (the ' ε-decrease of the embedding' trick) (cf. Step 3 in Lemma 5.3). If $a=v_{i+1}$, i.e., $i=l-1$, then we extend g to V_{i+1} as in Step 2. After that the proof is finished. In the opposite case, extend g to $v_{i} v_{i+1}$ linearly using the following rule:
(5.4.8) $p_{y} b$ lies in $c \times D$ higher than $p_{y} V_{0}, v_{i+1}$ lies in $C \times d$ to the right of $p_{x} b$.

Clearly, g on $V_{0} \cup v_{i} v_{i+1}$ is strongly basic. Let J_{0} be the connected component of $\left(J-v_{i} v_{i+1}\right) \cup v_{i+1}$ containing v_{i+1}. Evidently, J_{0} is the horizontal loaded leaf. Let ε be a suitable value for the strongly basic embedding $g \mid V_{0} \cup v_{v_{i}} v_{i+1}$. Extend g to J_{0} by Lemma 5.3 using the following rule (cf. (5.3.8)):
(5.4.9) $p_{x} J_{0}$ lies in $C \times d$ to the right of v_{i+1} and $p_{y} J_{0} \subset D_{\varepsilon}$.

Since $\left.g\right|_{V_{0} \cup v_{i} v_{i+1}}$ is a strongly basic embedding, then there are ε, k such that

$$
X_{\varepsilon}^{k}\left(V_{0} \cup v_{i} v_{i+1} \cup J_{0}\right), Y_{\varepsilon}^{k}\left(V_{0} \cup v_{i} v_{i+1} \cup J_{0}\right) \subset J_{0} \subset_{s b} C \times D
$$

Hence the extension is strongly basic.
Step 4 (the 'splitting of the embedding into layers' trick). Suppose that $a \in I_{j}-I_{j-1}$ (j-layer) is contained in the loaded leaf P beginning at $b \in v_{i} v_{i+1}$ (in Fig. 4, $j=2$). The proof is by induction on j. Base $j=1$, i.e., $a=v_{i+1}$, was already proved. Inductive step. Split the hanging edge of b in P into three parts by points b_{1} and b_{2}. Extend g to $b b_{2}=b b_{1} \cup b_{1} b_{2}$ linearly as in Step 3 of Lemma 5.3 (the 'jump along the axis' trick). Clearly, if $I_{1}^{\prime} \subset \cdots \subset I_{j^{\prime}}^{\prime}$ is a filtration for the loaded leaf P, then $a \in I_{j-1}^{\prime}-I_{j-2}^{\prime}$ $((j-1)$-layer $)$ is contained in the loaded leaf $\left(P-b b_{2}\right) \cup b_{2}$ beginning at $b_{2} \in I_{2}$. By the inductive hypothesis there is an extension of g to $P-b b_{2}$ such that (see the 'increase of the embedding' trick)
(5.4.10) if ε is a suitable real for the strongly basic embedding g on $P-b b_{2}$, then $(J-P) \cup b b_{2} \subset C_{\varepsilon} \times D_{\varepsilon}$.
Evidently, the embedding g is strongly basic.
Lemma 5.5. Let G be a simple admissible tree. Suppose that there is a strongly basic embedding $g: J_{1} \rightarrow C \times D$ such that $r=c \times d$, all horizontal (vertical) satisfactory points
of J_{1} lie in $C \times d(c \times D$, respectively $)$ and if J_{1} has the end a, then a lies either to the right of or higher than $J_{1}-a$. Then there is an extension

$$
g: G \rightarrow\left(T_{m} \times D\right) \cup\left(C \times T_{n}\right)
$$

such that all horizontal (vertical) satisfactory points of G lie in $C \times d(c \times D$, respectively).
Proof. Step 1 (a loaded leaf at the end of the previous). First suppose that J_{1} has the end a. There is a strongly basic embedding

$$
g:\left(J_{1}, a\right) \rightarrow\left(C^{\prime} \times D^{\prime}, c^{\prime} \times d^{\prime}\right),
$$

where C^{\prime} and D^{\prime} are subarcs of C and D containing c and d, respectively, and $c^{\prime} \times d^{\prime}$ is either the lower right or the upper left vertex of the square $C^{\prime} \times D^{\prime}$. Without loss of generality we may assume that a is the lower right vertex of the square. Take a loaded leaf $R \subset J_{2}-J_{1}$ beginning at a. In the case when the second satisfactory point of R by the order from a is horizontal, extend g to R by Lemma 5.3 such that
(5.5.1) If ε is a suitable real for $\left.g\right|_{R}$, then $J_{1} \subset C_{\varepsilon} \times D_{\varepsilon}$.

Suppose that the second satisfactory point of R ordered from a is vertical. Split the hanging edge of a in R into three parts by points r_{1} and r_{2}. Extend g to $a r_{2}=a r_{1} \cup r_{1} r_{2}$ linearly such that
(5.5.2) $p_{x} r_{1}$ lies in $C \times d$ to the right of a and $p_{y} r_{1}$ lies in $c \times D$ higher than $p_{y} J_{1}$;
(5.5.3) r_{2} lies in $c \times D$ higher than $p_{y} r_{1}$.

Extend g to $R-a r_{2}$ by Lemma 5.3 (for a vertical branch) so that
(5.5.4) if ε is a suitable value for $\left.g\right|_{R-a r_{2}}$, then $J_{1} \cup a r_{2} \subset C_{\varepsilon} \times D_{\varepsilon}$.

Note that after this step there are exactly $\phi(a)$ non-embedded loaded leaves of a in $J_{2}-J_{1}$. If the loaded leaf R has the end, then we apply the previous to R instead of J_{1}, and so on, until we embed a subtree $W \subset G$ and the last embedded loaded leaf in W has no end.

Step 2 (the 'choice of pages' trick). Suppose that there is a non-embedded loaded leaf S of a satisfactory point $s \in W-r$. Without loss of generality we may assume that s is horizontal. Split the hanging edge of s in S into three parts by points s_{1} and s_{2}. Since s is horizontal, then by Φ.(b) we may take a 'free page' of $C \times T_{n}$ (i.e., a 'page' $C \times D^{\prime}$ not containing the already embedded subtree of G, where D^{\prime} is a 'ray' of T_{n}). Linearly extend g to $s s_{2}=s s_{1} \cup s_{1} s_{2}$ using the following rules:
(5.5.5) $p_{x} s_{1}$ lies in $C \times d$ to the right of $p_{x}\left(W \cup s s_{1}\right)$;
(5.5.6) s_{2} lies in $C \times d$ to the right of $p_{x} s_{1}$.

After that, extend g to $S-s s_{2}$ by Lemma 5.3 (cf. Step 1 of Lemma 5.4) so that
(5.5.7) if ε is a suitable value for $\left.g\right|_{S-s s_{1}}$, then $W \cup s s_{1} \subset C_{\varepsilon} \times D_{\varepsilon}$.

Evidently, the embedding g is strongly basic. Actually,

$$
X_{\varepsilon}^{2}(W \cup S), Y_{\varepsilon}^{2}(W \cup S) \subset W \cup\left(S-s s_{1}\right) \subset_{s b} C \times D
$$

After that, we analogously embed other loaded leaves of G.
Step 3. Now it remains to embed only loaded leaves beginning at the root r of G. By the construction of G, the root r has $\phi(r)+2$ loaded leaves in G. Clearly, we have already
embedded exactly one of these loaded leaves into $C \times D$ (the loaded leaf J_{1}). First consider the partial case $m=2$. Then, by property Φ we may embed first $\phi(r)$ loaded leaves at r into $C \times T_{n}$ the last branch at r into $(\mathbb{R}-C) \times D$ analogous to Step 2. In the general case Φ.(b) implies that we can find M and N such that $\phi(r)+1=M+N$ and

$$
M+\phi\left(a_{1}\right)+\cdots+\phi\left(a_{k}\right) \leqslant n-1, \quad N+\phi\left(b_{1}\right)+\cdots+\phi\left(b_{l}\right) \leqslant m-1,
$$

where a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{l} are all horizontal and vertical satisfactory points of $G-r$, respectively. Thus, we may apply the 'choice of pages' trick as follows. First we embed M loaded leaves of r into 'free pages' of $C \times T_{n}$; the other N loaded leaves we embed into 'free pages' of $T_{m} \times D$.

Lemma 5.6. Let K be a complete admissible tree and $G=(K-H) \cup h$ the respective simple admissible tree. Suppose that there is a strongly basic embedding

$$
g: G \rightarrow\left(C \times T_{n}\right) \cup\left(T_{m} \times D\right)
$$

such that all satisfactory points of G lie either in $C \times d$ or in $c \times D$. Then there is a basic embedding

$$
f: K \rightarrow\left(C \times T_{n}\right) \cup\left(T_{m} \times D\right)
$$

such that $\left.f\right|_{G}=g$.
Proof. Put $\left.f\right|_{G}=g$. Since g is a strongly basic embedding, then there exist a real ε and an integer k such that $X_{\varepsilon}^{k}(G)=Y_{\varepsilon}^{k}(G)=\emptyset$. If $h \in C \times d(c \times D)$ then we embed H into $C \times D$ as a vertical (horizontal) arc such that $p_{y} H \subset D_{\varepsilon}\left(p_{x} H \subset C_{\varepsilon}\right.$, respectively). Since $X_{\varepsilon}^{k}(K), Y_{\varepsilon}^{k}(K) \subset H$, then f is a basic embedding.

6. Proof of sufficiency in Theorem 1.4

Theorem 6.1. A connected tree satisfying condition (1.4.1) is an admissible tree.
Our aim is to select some filtrations in K satisfying conditions (4.2.1), (4.2.2), (4.3.1) and to call some vertices of K either excellent or good, or satisfactory, and to call each satisfactory point either horizontal or vertical such that the property Φ holds. In the partial case $m=2$, the following constructions are simplified as follows. We may take an arbitrary root and Φ follows from $\delta(G) \leqslant n-1$.

If $\delta(K)<m+n-2$, then set $G=K$. In the opposite case, let G be K without a hanging edge at a dry vertex of K. Thus, $\delta(G) \leqslant m+n-3$. So, it suffices to prove that G is a simple admissible tree. Call each bad vertex of K satisfactory. For each satisfactory point $b \in G$, set $\phi(b)=\operatorname{deg} b-2$ in G. Then property Φ.(a) follows from $\delta(G) \leqslant m+n-3$. Take a bad vertex $r \in G$ having the maximal number of leaves (let N) in G by comparison with other bad vertices of G. Call r both the root of G and the satisfactory point. If r is a unique bad vertex of G, then G is a wedge of leaves. Evidently, in this case property Φ.(b) holds, i.e., G is a simple admissible tree. In the opposite case, consider the closure A of a connected component of $G-a$, containing a bad vertex of G.

6.1. Selection of a pre-loaded leaf

We shall go along a path $U \subset A$ beginning at r, until we meet a vertex $b \in A$. Evidently, only the following cases are possible:
(1) b is a non-bad vertex, having either a leaf or a hanging edge or both a hanging edge and a leaf (call b an excellent point);
(2) b is a non-bad vertex without leaves and possibly having a hanging edge (call b a good point);
(3) b is a bad vertex (call b a satisfactory point).

In the first and second cases, we go along a non-passed edge of b in A. In the third case, we have either $\phi(b) \leqslant n-1$ or $\phi(b) \leqslant m-1$. Actually, in the opposite case (i.e., $\phi(b) \geqslant n$ and $\phi(b) \geqslant m)$ let b have M leaves, i.e., there are $\operatorname{deg} b-M-1$ non-passed connected components of $A-b$ containing a bad vertex. Evidently, for each such component B we have $\delta(B) \geqslant 1$. We obtain

$$
m+n-3 \geqslant \delta(G) \geqslant N-1+\phi(b)+(\operatorname{deg} b-M-1)
$$

Since $\phi(b) \geqslant m$ and $\operatorname{deg} b=\phi(b)+2 \geqslant n+2$, then

$$
m+n-3 \geqslant N-1+m+n+2-M-1
$$

i.e., $M \geqslant N+3$, that is contradicted by the choice of the root r.

Suppose that we already met satisfactory points a_{1}, \ldots, a_{k} (and called them horizontal) and b_{1}, \ldots, b_{l} (and called them vertical), and b is not in these lists. Set

$$
\delta_{x}=\phi\left(a_{1}\right)+\cdots+\phi\left(a_{k}\right), \quad \delta_{y}=\phi\left(b_{1}\right)+\cdots+\phi\left(a_{k}\right)
$$

At the very beginning $\delta_{x}=\delta_{y}=0$. Then for a current meeting vertex b, we have either $\delta_{x}+\phi(b) \leqslant n-1$ or $\delta_{y}+\phi(b) \leqslant m-1$. The formal proof is analogous to that above: we alter the inequalities $\phi(b) \geqslant n, \phi(b) \geqslant m$ and

$$
\delta(G) \geqslant N-1+\phi(b)+(\operatorname{deg} b-M-1)
$$

on $\delta_{x}+\phi(b) \geqslant n$ and $\delta_{y}+\phi(b) \geqslant m$ and

$$
\delta(G) \geqslant N-1+\delta_{x}+\delta_{y}+\phi(b)+(\operatorname{deg} b-M-1)
$$

respectively. Suppose the previous vertex was called horizontal. If $\delta_{x}+\phi(b) \geqslant n$, then we stop at the previous step. If $\delta_{x}+\phi(b) \leqslant n-1$, then we call b horizontal. If b also has a leaf, then we stop. In the opposite case, we go along a non-passed edge of b. Thus, we construct U until we stop. Since $\delta_{x} \leqslant n-1$ and $\delta_{y} \leqslant m-1$, then Φ.(b) holds. I_{1} is obtained from U by gluing to U hanging edges and leaves from A at each respective excellent point of U. Clearly, I_{1} is a pre-loaded leaf with the root r.

6.2. Selection of a loaded leaf

Evidently, only the following cases are possible:
(1) The end a of I_{1} has a leaf in A.
(2) The end a of I_{1} has no leaves in A, i.e., if a is horizontal (vertical), then for the next vertex $b \in A$ we have $\delta_{x}+\phi(b) \geqslant n\left(\delta_{y}+\phi(b) \geqslant m\right.$, respectively).
In the first case, we proceed as in Section 6.1 to select a pre-loaded leaf of the last good point of I_{1} by the order from r, and so on, until either we sort out all good points of A or we get the case (2). In the second case, without loss of generality we may assume that a is horizontal, i.e., $\delta_{x}+\phi(b) \geqslant n$. Then we select pre-loaded leaves analogous to the case (1) with the following alterations: we start at the first (not the last) good point of I_{1} (by the order from r) having a pre-loaded leaf and we call all bad vertices vertical. Moreover, Φ.(b) holds. Actually, if we get $\delta_{y}+\phi(s) \geqslant m$ for a current satisfactory point $s \in A$, then we obtain

$$
m+n-3 \geqslant \delta(G) \geqslant \delta_{x}+\phi(b)+\delta_{y}+\phi(s) \geqslant m+n
$$

and that is a contradiction. I_{2} is obtained from I_{1} by gluing to I_{1} hanging edges and preloaded leaves at respective good points in A, and so on. J_{1} is obtained from I_{k} by gluing to I_{k} a leaf from A at each end (except b) of pre-loaded leaves in I_{k}. So, by definition (see Section 4.2) J_{1} is a loaded leaf, r is the root, and b is the end.

6.3. Selection of a simple admissible tree

Now, as in Section 6.2, we select loaded leaves at satisfactory points of J. Hence Φ.(b) holds. J_{2} is obtained from J_{1} by gluing to J_{1} either $\phi(b)=\operatorname{deg} b-2$ (if $b \neq r$ is not the end of J_{1}) or $\phi(b)+1=\operatorname{deg} b-1$ (if either b is the end of J_{1} or $b=r$) respective loaded leaves from G at each satisfactory point $b \in J_{1}$, and so on, until we get $J_{l}=G$.

7. Proofs of Corollaries 1.2 and 1.3

Proof of Corollary 1.2. It follows from Theorem 1.1 that in the case $n=3$, if a finite graph K is basically embeddable into $\mathbb{R} \times T_{3}$, then $\delta(K)<3$ or $\delta(K)=3$ and K has a dry vertex. Clearly, K does not contain any of the graphs of Fig. 1. Evidently, W_{n} satisfies conditions of Theorem 1.1 for each n. Hence W_{n} is basically embeddable into $\mathbb{R} \times T_{3}$ for each n. So, it suffices to prove that Corollary 1.2(a) implies Corollary 1.2(b). It follows from Corollary 1.2(a) that:
(1) all vertices of K have degree less than five or have degree five and a hanging edge;
(2) there are no two vertices of K either having degree five or having degree four and without hanging edges.
Take a vertex $a \in K$ of maximal degree. By F we denote the closure of a connected component of $K-a$. It follows from (2) that F is a leaf. Then by Lemma 7.1 below, F is contained in V_{n} for some n. It follows from (1) that $K \subset W_{n}$ for some n, i.e., Corollary $1.2(\mathrm{~b})$ holds.

Lemma 7.1. A leaf F is contained in V_{n} for some n.

Proof. Let G be a tree F after elimination of one hanging edge at every non-hanging vertex of K (if this edge exists). Then by Lemma 7.2 below $G \subset U_{n}$ for some n. Hence, by construction of $V_{n}, F \subset V_{n}$ for some n.

Lemma 7.2. Let G be a finite tree. Suppose that all vertices of G have degree less than four. Then G is contained in U_{n} for some n.

Proof. Let N be the number of all non-hanging vertices of G. Let us prove that there exists an embedding $G \subset U_{N}$ such that the root of U_{N} corresponds to a hanging vertex of G. Induction on N. Base $N=1$ is obvious. To prove the inductive step, let A be a hanging edge of G with the non-hanging endpoint a. Then to A assign an edge B of $U_{1}=T_{3}$ such that the center b of T_{3} corresponds to a. Since $\operatorname{deg} a<4$, then there are at most two connected components (denote its closures by H_{1} and H_{2}) of $G-A$. The number of all non-hanging vertices for H_{1} and H_{2} is less than that for G. Moreover, by construction of U_{N}, the closures of two connected components of $U_{N}-B$ are two copies of U_{N-1}. Then, by the inductive hypothesis, there exist embeddings $H_{1} \subset U_{N-1}$, $H_{2} \subset U_{N-1}$ such that roots of two copies U_{N-1} correspond to a. So, we obtain an embedding $G=A \cup H_{1} \cup H_{2} \subset B \cup U_{N-1} \cup U_{N-1}=U_{N}$.

Proof of Corollary 1.3. Consider the set of finite trees K such that either $\delta(K)>n$ or $\delta(K)=n$ and K has no dry vertices; and also $\delta(K) \leqslant 2 n$. From these trees, choose minimal by inclusion trees and call them prohibited for $\mathbb{R} \times T_{n}$. It follows from Lemma 7.3 that there are only a finite number of prohibited trees. So, it suffices to prove that a finite graph K is basically embeddable into $\mathbb{R} \times T_{n}$ if and only if K is a tree and K does not contain any of prohibited trees for $\mathbb{R} \times T_{n}$. Evidently, if K is basically embeddable into $\mathbb{R} \times T_{n}$, then by Theorem 1.1, K does not contain any prohibited trees.

Now suppose that K does not contain any prohibited trees and K is not basically embeddable into $\mathbb{R} \times T_{n}$. Hence $\delta(K)>2 n$. Without loss of generality we may assume that K is connected. For each bad vertex $r \in K$ we have $\operatorname{deg} r \leqslant n+2$. Actually, in the opposite case K contains the prohibited tree T_{n+3}. Evidently, there exists a bad vertex $r \in K$ having only one connected component G of $K-r$ with a bad vertex of K. Let K_{1} be the closure of G. Hence $K_{1} \subset K$,

$$
\delta(K)>\delta\left(K_{1}\right)=\delta(K)-(\operatorname{deg} r-2)>n,
$$

and we may apply the previous to K_{1}. In some step, we get $K_{l} \subset K$ and $n<\delta\left(K_{l}\right) \leqslant 2 n$. Consequently, K contains one of the prohibited trees. This is a contradiction.

Lemma 7.3. For each integer $k \geqslant 1$ there are a finite number of minimal by inclusion trees K such that $\delta(K) \leqslant k$.

Proof. It suffices to prove that there are a finite number of minimal by inclusion trees K with $\delta(K)=k$. Evidently, a minimal by inclusion tree is a union of some stars. Each bad vertex $b \in K$ contributes $\operatorname{deg} b-2$ into $\delta(K)=k$. Evidently, there are a finite number of ways to split $\delta(K)=k$ into a sum of positive integers. Consequently, for each term $l \geqslant 2$
in $\delta(K)=k$ we may take a star with $l+2$ rays, and also there are a finite number of ways to connect a finite number of stars to a finite tree K. So, Lemma 7.3 is proved.

8. Conjectures

The first conjecture is the following criterion for basic embeddability into $T_{m} \times T_{n}$.
Conjecture 8.1. A finite (not necessarily connected) graph K is basically embeddable into $T_{m} \times T_{n}$ if and only if K is a tree and either (1.4.1) or (1.4.2) holds.

By Theorem 1.4, it suffices to prove that if for a finite tree K condition (1.4.2) holds, then K is basically embeddable into $T_{m} \times T_{n}$.

Analogous to the proof of Corollary 1.3, Conjecture 8.1 implies the following Conjecture 8.2. But, possibly Conjecture 8.2 can be proved independently of Conjecture 8.1.

Conjecture 8.2. There exists only a finite number of 'prohibited' subgraphs for basic embeddings into $T_{m} \times T_{n}$. Consequently, for a finite graph K there is an algorithm for checking whether K is basically embeddable into $T_{m} \times T_{n}$.

Now we shall formulate a conjecture for basic embeddability into $G \times \mathbb{R}$, where G is a finite connected tree. Let A be the set of all non-hanging vertices of G. Let R be the set of all bad vertices of a finite graph K. For a map $\chi: R \rightarrow A$, let

$$
\delta_{\chi, a}(K)=\sum_{r \in R: \chi(r)=a}(\operatorname{deg} r-2) .
$$

Conjecture 8.3. A finite (not necessarily connected) graph K is basically embeddable into $G \times \mathbb{R}$ if and only if K is a tree and there exists a map $\chi: R \rightarrow A$ such that for each $a \in A$ either $\delta_{\chi, a}(K)<\operatorname{deg} a$ or $\delta_{\chi, a}(K)=\operatorname{deg} a$ and there is a dry vertex $r \in R$ with $\chi(r)=a$.

The following conjecture is for basic embeddings into a cylinder $S \times \mathbb{R}$ and a torus $S \times S$.

Conjecture 8.4.

(a) A finite graph K is basically embeddable into $S \times \mathbb{R}$ if and only if K does not contain any of the graphs of Fig. 5;
(b) A finite graph K is basically embeddable into $S \times S$ if and only if K does not contain any of the graphs of Fig. 6.

Theorem 1.1 consists of two parts: a natural one involving the defect and an unnatural one involving horrid and awful vertices. One can conjecture that this theorem is a partial case of some combinatorial (not topological) one, involving defect but not involving horrid or awful vertices, just as the Kuratowski theorem and the Archedeacon-Hunecke

Fig. 5.
Fig. 6.
description of graphs embeddable into \mathbb{R}^{2} and $\mathbb{R} P^{2}$ are partial cases of the RobertsonSeymor theorem on graph minors.

Conjecture 8.5. Suppose that A is a finite family of graphs with base points. Call a family M of graphs A-good if
(1) if $K \in M$, then every subgraph of K is in M;
(2) if $K \in M, x \in K$ and the closure L of a connected component of $K-x$ does not contain (topologically) subgraphs from the family A, then $(K / L) \in M$.
Then for each A-good family M there is a number N such that $K \in M$ if and only if the defect of K is less than N. The defect is the sum $\delta(K)=\left(\operatorname{deg} A_{1}-2\right)+\cdots+\left(\operatorname{deg} A_{k}-2\right)$ over all vertices A_{1}, \ldots, A_{k} of K that are base points of some subgraph $L \in A$ of K.

Acknowledgments

These results were first presented at the Alexandrov's Session at Moscow in May, 1997. This research was supported in part by the International Science Foundation Grants No s962350 and No s97-643. I wish to acknowledge P. Akhmetiev, E. Rafikov and, especially, A. Skopenkov for useful discussions.

References

[1] D. Archedeacon, P. Hunecke, A Kuratowski theorem for non-orientable surfaces, J. Combin. Theory B 46 (1989) 173-231.
[2] V.I. Arnold, Representations of continuous functions of three variables by the superposition of continuous functions of two variables, Mat. Sb. 56 (3) (1962) 3-92 (in Russian).
[3] A. Cavicchioli, D. Repovš, A.B. Skopenkov, Open problems on graphs, arising from geometric topology, Topology Appl., to appear.
[4] A.N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variables and addition, Dokl. Akad. Nauk USSR 114 (5) (1957) 953-956 (in Russian).
[5] K. Kuratowski, Sur les problèmes des courbes gauche en topologie, Fund. Math. (1930).
[6] P. Ostrand, Dimension of metric spaces and Hilberts problem 13, Bull. Amer. Math. Soc. 7 (1965) 619-622.
[7] N. Robertson, P. Seymor, Graph minors 8, A Kuratowski graph theorem for general surfaces, Combin. Theory 48B (1990) 255-288.
[8] A. Skopenkov, A description of continua basically embeddable in R^{2}, Topology Appl. 65 (1995) 29-48.
[9] Y. Sternfeld, Dimension, superposition of functions and separation of points in compact metric spaces, Lecture Notes in Math. 50 (Springer, Berlin, 1985) 13-53.
[10] Y. Sternfeld, Hilbert's 13th problem and dimension, Lecture Notes in Math. 1376 (Springer, Berlin, 1989) 1-49.

[^0]: ${ }^{1}$ Email: kurlin@mccme.ru.
 0166-8641/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
 PII: S0166-8641(98)00147-3

