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Abstract

The notion of a basic embedding appeared in research motivated by Kolmogorov—Arnold’s
solution of Hilbert’s 13th problem. LeX, X, Y be topological spaces. An embeddikigc X x Y is
calledbasicif for every continuous functiorf : K — R there exist continuous functiogs X — R,

h:Y — R such thatf (x, y) = g(x) 4+ h(y) for any point(x, y) € K. Let7; be ani-od.

Theorem. There exists only a finite number of ‘prohibited’ subgraphs for basic embeddings into
R x T,,. Consequently, for a finite grapki there is an algorithm for checking whethgris basically
embeddable intR x T,. Our theorem is a generalization of Skopenkov’s description of graphs
basically embeddable inf&?, and our proofs is a (non-trivial) extension of that one&000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Hilbert conjectured in his 13th problem that there are continuous functions of three
variables which are not representable as a composition of continuous functions of two
variables. Arnold and Kolmogorov proved in [2,4] that every continuous function of several
variables defined on a compact subseRéfadmits a representation as a sum of-21
continuous functions of one variable.

Let X, K, Y be topological spaces. An embeddikgC X x Y is calledbasic (and
denoted byK C;, X x Y) if for every continuous functiorf : K — R there exist continuous
functionsg: X — R, h:Y — R such thatf (x, y) = g(x) + h(y) for any point(x, y) € K.

This condition can be reformulated in terms of function spaces as follows [10]. Given a
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map¢ : K — X x Y, considerp as a product of two maps: K — X andg: K — Y. Let
the linear superposition operatér: C(X) & C(Y) — C(K) be given by

P (g, ) (x) = g(a(x)) +h(BX)).

Then an embedding is basic if and onlyifmapsC(X) & C(Y) ontoC(K).

The weaker version of Arnold—Kolmogorov’s theorem is that/tkdimensional cube is
basically embeddable iR?**+1. The following theorem describing the compacta basically
embeddable iR™ for m > 3 is proved in [6] and [9]: a compactuX is basically
embeddable ifR™ if and only if dimX < (m — 1)/2. Trivially, X is basically embeddable
in R if and only if X is topologically embeddable there. The description of pathwise-
connected compacta basically embeddabléRfin terms of prohibited subcontinua
is given in [8]. In a partial, case there are characterizations of finite graphs basically
embeddable ifR? in terms of prohibited subgraphs and universal trees in [3, Theorem 1.2].
We can reformulate these criteria as follows: “A finite grahs basically embeddable
into R? if and only if K has no bad vertices (or, equivaleniyk) = 0)” (see necessary
definitions below). But the general problem of characterizing the compacta basically
embeddable ifR? is still open.

Basic embeddings into a product of dendrites were studied in [10, Theorem 4.6, p. 29].
Let 7; be ani-od (or a star withi rays). The purpose of this paper is to describe finite graphs
basically embeddable int® x 7,,. Moreover we obtain some necessary and sufficient
conditions for basic embeddability of graphs irfig x 7,, for m > 3. This is a solution
of some problems from the preliminary version of [3].

Let us make some necessary definitions. Call a vertex (i.e., either an endpoint or a
branched point) of a finite grapki horrid if its degree is greater than 4. Call a vertexkof
awfulif its degree equals 4 and it has no hanging edges. Call a verf&bafif it is either
awful of horrid. Call a bad vertex ok dry if it has a hanging edge. Clearly, a dry vertex
is a horrid vertex. Thelefectof K is the sum§(K) = (degA; — 2) + - -- + (degA — 2),
whereAq, ..., A, are the bad vertices & . Further we suppose> 3.

Theorem 1.1. A finite (not necessarily connectedraph K is basically embeddable into
R x T, ifand only ifK is a tree and eithe8(K) < n or §(K) =n andK has a dry vertex.

Corollary 1.2. A finite graphK is basically embeddable int& x 73 (or, equivalently,
T> x T3) if and only if either of the two following equivalent conditions holds

(a) (cf.[5]) K does not contain any of the graphs of Fig.

(b) K is contained inW,, for somen (see Fig.2).

Now we shall construct universal grapWg, for basic embeddings int® x 73. Let
Uy be T3, A a hanging edge of/; anda the hanging endpoint od. The graphU, ;1 is
obtained froml,, by branching every hanging edge excapt._et V, be the graph obtained
by gluing one hanging edge to every non-hanging vertel(,0fThe vertex: is called the
root of U,, andV,,. Let W,, be the wedge of four copies &f, and an arc such that the roots
of V, attach to one endpoint of the arc.
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Corollary 1.3. There exists only a finite number of ‘prohibited’ subgraphs for basic
embeddings int® x 7,,. Consequently, for a finite grapK there is an algorithm for
checking whethek is basically embeddable infe x 7,.

Theorem 1.4. If a finite (not necessarily connectgdraph X is basically embeddable into
T x T,, (m > 3), thenK is a tree and one of the two following conditions holds
(1.4.1) either§(K) <m+n—2,0r8(K) =m+n —2andK has a dry vertex
(1.4.2) all bad vertices oK are split into two collectionas, ..., a;y andby, ..., b; such
that

(degas — 2) + - - - + (degax — 2) < n,
(deghy — 2) + - - - + (degh; — 2) < m.

Moreover, if the firs{second weak inequality is equality, then (b1, respectivelyis dry.
In particular, §(K) < m + n.
If condition(1.4.1)holdsm > 2, thenK is basically embeddable intf, x T,,.

The proof of Theorems 1.1 and 1.4 is based on the reduction of the property of being
a basic embedding to a pure geometric condition [10, Lemma 2.23(iii), p. 14], and on
an extension of techniques from [8]. It seems that Theorem 1.4 is unnaturally more
complicated than Theorem 1.1. But there is the following gr&pbasically embeddable
into T3 x T3, for which (1.4.1) does not hold. L&t be a disjoint union of two pentods, i.e.,
8(K) = 6. Fix a hanging edg€ (D) in a triod T3 (T3) with the center (d, respectively).
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Then the subsef x T; U T3 x D C T3 x T consists of two ‘books’ with three ‘pages’
pasting together. Basically embed each pentod into its ‘book’, as in Corollary 1.2, and
such that its projections oa x D and C x d are mutually disjoint. Then we have a
basic embedding& C 73 x Tj. It should be quite trivial after the reading of Section 5.
This example shows an essential difference between the ease®? andm > 2. The

paper is organized as follows. In Section 2 we introduce the main tools of studying basic
embeddings and prove some easy lemmas. In Section 3 we prove necessity in Theorems 1.1
and 1.4 using these lemmas. We split the proof of sufficiency in Theorems 1.1 and 1.4 into
three parts. The first part is a description of an admissible tree (Section 4). The second
part is the basic embeddability of an admissible tree (Theorem 5.1 in Section 5). The third
part is the proof that each connected tree satisfying condition (1.4.1) is an admissible tree
(Theorem 6.1 in Section 6). Since the conditions of Theorem 1.1 are the partial case of
(1.4.1) (form = 2), then sufficiency in Theorems 1.1 and 1.4 will be proved. Thus, we can
formulate a criteria for basic embeddings ifito< 7, as follows: “A finite connected graph

K is basically embeddable ini® x 7;, if and only if K is an admissible tree”. In Section 7

we prove Corollaries 1.2 and 1.3. In Section 8 we formulate some interesting conjectures
for basic embeddings into a product of finite graphs. All constructions in the paper are
simplified for basic embeddings in® x T,,. At the beginning of Sections 3—6 we make
some remarks for this partial case.
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2. Preliminaries

Let X, Y be finite graphs. By, and p, we denote the projections, : X x ¥ — X,
py:XxY—>Y.ForZC X xY let

E(Z)={ze Z: cardZ N (pyz x ¥)) > Land cardZ N (X x pyz)) > 1}.

A sequencéas, ...,a,} C X x Y is called ararray, if for eachi, a; # a;+1, andp, (a;) =
px(a;i41) for oddi andp, (a;) = py(a;i+1) for eveni. The proof of [10, Lemma 2.23(jii),
p. 14], [8, GC, p. 33] holds for a more general case:

GC 2.1. An embeddin& C X x Y is not basic if and only if
(2.1.1) E"(K) # ¢ for eachn, or
(2.1.2) for eachn there exists an array of points inK.

By ¢ andd we denote the centers @f, andT,,, respectively.

Basic non-embeddability ofS into T,, x T, (cf. [10, proof of Proposition 2.21, p. 15]).
Suppose to the contrary th&tc, 7,, x T,. SinceS is a finite graph, thep,S (p,S)
either is a join of at most (n) arcs, containing the vertex(d, respectively) or is an arc.
Evidently, for any point € Intp, S (Int p,S) we have thata x T,) NS (Trn x a) N S,
respectively) consists of more than one point. Hefiee E(S) consists of at most + n
points. A simple inductive argument shows that for eash0, E/(S) is a cofinal set irf,
and in particular is nonempty, contradicting GC 2.1.

An arc A is calledhorizontal(vertical) if p,A (pxA, respectively) is a point. An arc is
called acompressiorarc if it is either horizontal or vertical.

Definition 2.2. Suppose thak ¢ X x Y and! C K (J C K) is a horizontal (vertical,
respectively) arc. A compression generated by is the map

g=@FxidY)o(dX xs5): X xY — (X/pI) x Y/py,J),

wherer: X — X/p,I ands:Y — Y/p,J are the projections.

Compression Lemma 2.3.Let K, X, Y be finite graphsk C, X x Y and/, J andq be
as above. Then

(2.3.1) K Cp (X/po1) x (Y/pyJ);

(2.3.2) glk—1uyy is @ homeomorphism

Proof. The proof of (2.3.1) and (2.3.2) is analogous to [8, §2, “proof of Compression
Lemma”]. With the following alterations: “the segmelat, b] is parallel tox-coordinate
(y-coordinate) axis” to [a, b] is a horizontal (vertical, respectively) arc”, and ‘afc
orthogonal to ard’ to ‘either bothp, I andp, J or bothp,J andp,I are points’. O
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3. Proof of necessity in Theorems 1.1 and 1.4

The structure of the proof is as follows. See Diagram 1. Necessity in Theorems 1.1
and 1.4 in the simple case (when all awful verticeskofie in I") follows from (3.1.1)
and (3.1.2) in Proposition 3.1. The general case follows from the simple one, Reduction
Lemma 3.2 and Compression Lemma 2.3. We prove (3.1.1) and (3.1.3) analogously
using Induction Lemma 3.3. We prove (3.1.2) and Reduction Lemma 3.2 analogously
using (3.1.3). In Proposition 3.1 we shall consider basic embeddings of a finit&tree
into G x H, whereG and H are subpolyhedra df,, and T, respectively, and such that
some products of hanging vertices@fand H correspond to some non-hanging vertices
of K.

Our proof is based on two ideas. The first idea is used in (3.1.1) and (3.1.3), which
are generalizations of [8, “Basic non-embeddabilityaf] and [8, “the cross lemma”],
respectively. The second idea is used in (3.1.2) and Reduction Lemma 3.2, which are
generalizations of [8, “Basic non-embeddability G§"]. So, before reading the proofs
below it will be helpful to look at the corresponding proofs in [8].

By I' denote the singular set @f, x T,. Evidently," =¢ x T,, UT,, x d form,n >3
andl" =c x T, form =2,n > 3. Finally, I" is a graph. Considef,, x T, as the union of
I x J,wherel Cc T,,, J C T, are ‘rays’, i.e., arcs, with endsandd. From [8, Theorem 1]
follows that all horrid vertices oK lie in I (actually, no neighborhood of a horrid vertex
in K can be basically embeddable intoc J).

Definition (G, T;-structure orR x T;,). Let G C R be a disjoint union of arcs antl =
T; C T, be a substar. Leg, ..., g be arbitrary distinct points ofs. Then(G, T}, {g})
is called aG, T;-structure orR x T,,. Let M(G, T}, {g;}) be the sum ofj and degrees of
pointsgs, ..., gs in G.

Evidently, each poing; has degree 2 ilR. HenceM (R, T}, {g;}) = j + 2s. For the
necessity in Theorem 1.1 we may omit cases 2, 3 below. And also in Induction Lemma 3.3,

General case

Reduction
Lemma 3.2

Compression
Lemma 2.3

C Induction Lemma 3.3 )

Diagram 1.
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if H=T;,thenH' = H — py1§’ =T;_1. A G, Tj-structure oR x T, is the partial case of
aG, H-structure(G, H, {g;}, {h;}) onT,, x T,,, whereH =T;j, {h;} = 0.

Definition (G, H-structure on7,, x T,). LetG c T,,, H C T, be subpolyhedra con-
tainingc, d, respectively. Legs, ..., g (h1, ..., hy) be arbitrary distinct points o (H,
respectively) such that; = ¢, h; = d simultaneously for somg j is impossible. Then
(G, H,{g;},{h;}) is called aG, H-structure orfl;, x T,,. Let M(G, H, {g;}, {h;}) be the
sum of degrees of pointg, ..., g; in G and pointshy, ..., h, in H. If g; # ¢ for eachi
(h; # d for eachj), then we add td/ degree ot in G (d in H, respectively).

Obviously, the degree of each poipt # ¢ in G (h; # d in H, respectively) is
either 0, 1, or 2. The centerof T,, (d of T,) has degreen (n) and each other point
gi (hj) has degree 2 iff,, (T, respectively). Hence i§; # ¢, h; # d for eachi, j, then
M (T, T, {gi}, {h;}) = m +n + 2(s + 1). In the opposite cas@d (T,,, T, {g:}, {hj}) =
m+n+2(s+1t—1).

Proposition 3.1. Let T, x T,, have aG, H-structure(G, H, {g;}, {h;}). LetK C T,, x T,
be a finite tree. Suppose that all awful verticesolie in I". Let R be the set of vertices in
K containing all bad vertices ok. Suppose thar is split into two setdas, ..., a;} and
{b1, ..., b} such that

(K,a1,...,a5,b1,...,b;) Cp (Gx H,g1xd,...,gs xd,cXhy,...,cXhy).

Let N = s + ¢ be the number of vertices iR. Further we assume the defect &f is
calculated over all vertices frorR (not only bad. Then the following conditions hald
(3.1.1) 8(K) +2N < M(G, H, {gi}, {h;});
(3.1.2) if verticesay, ..., as, b1, ..., by have no hanging edges, then

8(K)+2N < M (G, H, (g}, {h}}),

hence if§(K) + 2N = M, then there is a vertex frorR with a hanging edge
(3.1.3)if 8(K) + 2N = M(G, H,{g:}, {h;}) > 0, then there exists a compression arc
A C K containing a vertex fronR.

Reduction Lemma 3.2.Let K C T,, x T, be a finite tree X C T,,, Y C T,, be sub-
polyhedra. IfK C, X x Y, then there exist compressiogs, .. ., g such that all awful
vertices ofK’ = gi(...(g1(K))...) liein I' and§(K’) > 5(K).

Proof of necessity in Theorems 1.1 and 1.4Suppose that all awful vertices &f lie in I”
(simple case).

Casel (the partial casem = 2). For presenting the main ideas, we first prove the
simple case fom = 2. Then necessity in Theorem 1.1 follows from Propositions (3.1.1)
and (3.1.2) forG = T», H = T, as follows. LetR be the set of all bad vertices K. Let
g1xd,..., g xd betheimages of all bad vertices Efunder the given basic embedding
K Cp Rx T,. SinceMR, T,,, {gi}) =n + 25, N = s, then by (3.1.1) and (3.1.2) either
3(K) <nord(K)=nandK has adry vertex.
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Now we prove the simple case far,n > 3. Letg); xd, ..., gs xd,c X h1,...,¢ X I
be the images of all bad vertices &f under the given basic embeddi&kgc, 7;, x T,,.
SinceM (T, Tn, {gi}, {h;}) <m +n+ 2N, then by (3.1.13(K) <m +n.

Case2 (¢ x d corresponds to a bad vertpxSuppose there is a bad vertex ¢ x d
of K. Consequently, eithes; = ¢, a; =r for somei orh; =d, b; =r for somej. Hence
M(Ty, Ty, {gi}, {hj}) =m+n+2(N —1),i.e., (1.4.1) holds by (3.1.1) and (3.1.2).

Case3 (c x d does not correspond to a bad ventexet as,...,ar andbs...., b
be all bad vertices oK, images of which lie in(7,, — ¢) x d and ¢ x (T, — d),
respectively. Evidently, there are stdligg., [ [ - - - [ [ Tdegy, C K basically embedded into
m ‘books’ (C' — ¢) x T,, whereC’ is a hanging edge of,,. By definition we have
M(Ty —c, Ty, {gi},¥) =n + 2s and by (3.1.1) folTgegs; U - - - U Tdege, C (Tn —¢) X T,

(degas — 2) + - - - + (degax — 2) < n.

Moreover, by (3.1.2) when the equality holds, one vertex fiaph (let it be a1) is a dry
vertex. Analogously we have

(degh1 —2)+---+ (degh; —2) <m

and, when the equality holds; is a dry vertex. So, (1.4.2) holds.

Case4 (general casg In the general case (when not all awful verticeskofie in I")
by Reduction Lemma 3.2 there exist compressigns. ., gx such that all awful vertices
of K =qr(...(q1(K))...) lieonI" and§(K’) > §(K). Then necessity in Theorems 1.1
and 1.4 follows from the simple case f&f'. O

Proof of (3.1.1) and (3.1.3).Further, we briefly denoté (G, H, {g;},{h;}) by M.
Induction onM. BaseM = 0 in (3.1.1): R is the set of &/ isolated points. Hence
3(K)=—2N.BaseM = 1in (3.1.3): vertices fronR have not more than one edgekn
Hences(K) < 1— 2N. The inductive step is Induction Lemma 3.3 belov

Induction Lemma 3.3. Under the conditions of Propositio®i1 we have that there exist
a subgraphZ c K and an arcB C L containing a vertex fronR such thats (L — l§) =
3(K) — 1 and either forG' = G — px1§, H =HorforG=G,H=H— py1§’ the
following condition hold
(3.31) (L — B,a1,...,as,b1,....b) Cp (G' x H,g1 x d,...,gs xd,c x h,...,
¢ X hy);
(3.3.2) M(G', H' {gi}, {h;}) = M(G, H., g}, {h;}) — 1.

Proof. By GC 2.1 there exists a maximal for which L = E"(K) U R contains a
neighborhood of every point frorR in K. Evidently,6(L) = §(K). Then for some point
r € R, E(L) does not contain any neighborhoodroih K. So, there exists an edge &f
with endr, sayA, and a sequende;} € A — E(L) converging to-. By definition of E we
have eithell. N (pxr; x T,) =r; of LN (T, x pyri) = r; for eachi. We may assume that
LN (pyri x T,) = r; for eachi. SinceE (L) is a finite graph, thei® (L) contains a finite
number of connected components. The€lL) is split by graphsp,r; x T, into a finite
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number of connected components. Hence there exists a sBbharg containingr such
thatL N (pyB x T;) = B. S0, (3.3.1) holds fo6' = G — p, B andH’ = H. Since the arc
B contains the vertex € R, then (3.3.2) holdsan®{L — B) =§(L) —1=4§(K)—1. O

Proof of (3.1.2). We shall prove (3.1.2) by induction af (see Proposition 3.1). Bases
M =1, M =2 in (3.1.2) are obvious (see the bases in the proof of (3.1.1) and (3.1.3)).
Suppose to the contrary th&tK) + 2N = M. Then by (3.1.3) foiK there is an inclusion
maximal compression arf with endpoints- € R anda € K. Take the compressiog
generated by;. By (2.3.1) we have;1 K Cj; (G/I1) x H. By (2.3.2) only the following
cases are possible:

(1) a ¢ R is a vertex ofK;

(2) a e R;

(3) 1K =K.

Casel. Inthe first case, sineeis non-hanging, then degr in g1 K is greater than deg
in K. Henced(q1K) > §(K). Also the number of all vertices iR for g1 K equalsN and

M(G/11, H,{q18i}. {q1h;}) < M(G, H,{gi}, {h;}).

Then §(q1K) + 2N > M (here M is for the basic embeddingi1K C (G/11) x H),
contradicting (3.1.1).

Case2. In the second case, singer = g1a, then the number of all vertices iR for
¢1K equalsN — 1 and

M(G/I, H,{q18i}gi#a- {q1hj}n,a) = M(G, H,{gi}. {h;}) — 2.

Since (degr — 2) + (dega — 2) = (deggir — 2), then we haveS(¢1K) = §(K). Then
8(q1K) + 2(N — 1) = M (hereM is for the basic embeddingt K c (G/I1) x H) and
(3.1.2) follows from the inductive hypothesis.

Case3. In the third casé(¢q1K) = §(K). Note that we proved that the defect of a tree
after a compression is not less than that at the beginning. So we may apply analogous
compressionsgy, ..., gk, generated by ards, . . ., Iy, respectively. It suffices to prove that
this process is finite.

Suppose there is a compression (let itdhe generated by; atry € R such thatg1 K
contains a compression akgatr, € R appearing due tgs, i.e., I1, I are orthogonal and
if I1 is horizontal (vertical), then

ro€pert X Tne  qrt(I2) C(pxly) X Ty

(r2€ Ty X pyr1, g4 “(I2) C Ty x (pylh), respectively.

After that, suppose there is an analogous &rc ¢2K, and so on. If we find such arcs
I1, ..., Iy, then we may construct an array/of 1 points inK as follows.

We may assuméy is horizontal. Take a poink; € Iy — r¢. Thenby, ri is the array
of 2 points ingx—1K. Sincel; appears due tgi_1, then there i$_1 € Ir_1 N (T, X
py(@ b)), Theng Yiby, br_1, re—1 is the array of three points ig—2K, and so on.



122 V. Kurlin / Topology and its Applications 102 (2000) 113-137

Since the map]lfl preserves the orthogonality of arcs, then we find the arraly-pfl
pointsink:

lar (o (g @) ) ar t(B2), br, ).

But there are no arrays of arbitrary lengthin Hence there is a constafitsuch that the
length of the above constructed sequence of Arcs ., I is less tharC. Since the number
of vertices fromR is N, then there are not more tha¥(m + n) compression arcs ik .
Hence we can do not more thaN (m + n))¢ compressions, i.e., our process is finitey

Proof of Reduction Lemma 3.2. Let r be an awful vertex ok such that ¢ I". Let C

be the inclusion maximal cross K with centerr. Apply compressionsgy, ..., gx to C,
analogous to the proof of (3.1.2). We have either a contradictign(@©r. (q1(r))...) € I

for somek. We may iterate this procedure to each awful vertekdhat does not lie in".

And also, the defect of a tree after these compressions is not less than that at the beginning
(see the remark in Case 3 of the proof of (3.1.2)p

4. Construction of an admissible tree

This section is organized as follows. First we construct a pre-loaded leaf. After that we
define a loaded leaf using a filtration of pre-loaded leaves. Finally, we construct simple and
complete admissible trees using a filtration of loaded leaves.

The following construction is simplified for Theorem 1.1. In this case we do not split
satisfactory points into horizontal and vertical. In particular, in the definition of a loaded
leaf we omit condition (4.2.2b). Hence we also omit the notion of the end of the loaded
leaf and the order of satisfactory points in the loaded leaf. Finally, we may alter the
property® to the following: ifr1, ..., ry are all satisfactory points of a finite tré&g, then
¢(r1) + - - -+ ¢ (rx) <n — 1. Remember that a tree basically embeddableRftoontains
only vertices either of degre€ 3 or of degree 4 with a hanging edge.

Definition (a leaf and its root). Take a trele basically embeddable int&? with its
endpointr. ThenL is called a leaf with the root.

4.1. Definition of a pre-loaded leaf

Let I be a leaf. Take two of its hanging vertices: € I (i.e., endpoints) and two
arbitrary sets of distinct points in the interior of edged dfjoodandsatisfactorypoints,
respectively) such that these points lie in an &rc I with endpoints- anda (possibly
U =r =a). Split the set of satisfactory points intmrizontalandvertical. Moreover, we
shall assume that a are satisfactory, andis simultaneously both horizontal and vertical.
For each satisfactory pointe I take an integeg (b) > 0 such that the properg below
holdsforK = I. Since each vertex of a leaf has either degte&eor degree 4 and a hanging
edge, then/ is obtained fromUU by gluing toU either a hanging edge or a leaf, or both
a hanging edge and a leaf at some pointg/dcalledexcelleny. Then the tred with its
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excellent, good and satisfactory points, and the funcfigcalled apre-loaded leafThe
pointr is called theroot of 1. The pointa is called theendof I (possiblyl = r = a). For
example, in Fig. 4 the pre-loaded leaf with the regt= o x g and the end is represented
by fat lines,q is the good pointz is the excellent point. If all satisfactory points bfare
horizontal (vertical), thed is calledhorizontal(vertical, respectively).

Property @.
(@) If r1 =r,rp, ..., rs are all distinct satisfactory points of a finite trég, then

pr)+ -+ @(rs) <m+n—3;

(b) if a1,...,ax and by, ..., b; are all horizontal and vertical satisfactory points in
K —r, respectivelyfor a horizontal and vertical pre-loaded leaf we have 0 and
k = 0, respectively, then

pla)) +---+da)<n—-1, o) +---+¢b)<m—1
4.2. Definition of a loaded leaf

Let I; be a pre-loaded leaf. Léi C --- C I} C J be a filtration such that the following
conditions hold:

(4.2.1) I;41 is obtained from/; by gluing to I; either a horizontal or a vertical pre-
loaded leafB and possibly a hanging edgg at each good vertexe I; — I;_1
(Io=9) foreachi =1,...,k — 1. Moreover, the root oB is the good pointin
I;+1 and alsa is both an endpoint off and the root ofB; and either

(4.2.2a) J is obtained from/; by gluing to I a leaf at the end of each pre-loaded leaf

in I. Moreover, all satisfactory points of, are horizontal (vertical). In this
case/; is calledhorizontal(vertical, respectively); or

(4.2.2b) J is obtained from/; by gluing toI; a leaf at the end of each pre-loaded leaf

in I, except one end. In this cases is called theend of J;. Moreover, all
satisfactory points of/; beforea (for the definition of the order, see below)
anda itself are horizontal (vertical), and other satisfactory points/pfare
vertical (horizontal, respectively).

Then the tree/ with its excellent, good and satisfactory points, and the funetisnch
that the propertyp holds for K = J, is called aloaded leaf Note that if a loaded leaf
has only one satisfactory point (obviously it is its root), thkeis a leaf. Take a good point
b € I;. Let B be the connected component.bf- b that is contained iy — I;. Then the
closure ofB is the loaded leaf with the roét

Definition (the order of satisfactory points in the loaded leaf). We shall define the order
recursively. The order of satisfactory points inis from the root to the end along the
arcU. The satisfactory points df in this order are the first satisfactory pointsinThe
order of good points ir1 is from the end to the root along the &c The next points in

J are satisfactory points in the loaded leaf beginning at the first good pofat(in this
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loaded leaf the order is recursively defined), and so on. The last poisitaria satisfactory
points in the loaded leaf beginning at the last good poirifin

For example, in Fig. 4 the order of satisfactory points in the loaded leaf embedding into
A x Bis as follows:ug =« x 8, u1,uz2,s (g1, g2 are not vertices of the loaded leaf).

Definition (a bridge and its ends in the loaded leaf). The subtreé ipetween two
neighboring satisfactory pointsg, b, € I is called a bridge of’1, andb1 andb» are called
the ends of the bridge.

Clearly, if a bridgeB of J does not contain the endof J1, then all satisfactory points
of B are either horizontal or vertical simultaneously.

4.3. Definition of an admissible tree

Let J; be a loaded leaf. Lef; C --- C J; = G be a filtration such that the following
condition holds:

(4.3.1) J;41 is obtained from/; by gluing toJ; either¢ (b) (if b # r is not the end of

a loaded leaf in/;) or ¢ (b) + 1 (if b either is an end of a loaded leaf if) or
b =r) loaded leaves at each satisfactory péirt J; — J;_1 (Jo = ¥) for each
j=1,...,1-1.

The treeG such that the propertg holds forK = G is called asimple admissibléree
for T,, x T,,, and the root of/; is called theoot of G. Take a satisfactory poihte G. K is
obtained fromG by gluing to G a hanging edgé/ at/ such that: is an endpoint o .
The treek is called acomplete admissibleee forT,, x T,, (m > 2, n > 3). We shall say
that a finite treeK is anadmissibleree, if K is either simple or complete admissible.

5. Construction of a basic embedding
Theorem 5.1. An admissible tree is basically embeddable ififox T;,.

Let ¢ andd be the centers df,, andT,, respectively. Fix hanging edgésandD of 7,
andT,, respectively. Further, we assume that d is the lower left vertex of the square
C x D. In this section we shall construct a basic embedding of an admissible tree such that
all horizontal (vertical) satisfactory points lie & x d (c x D, respectively).

Definition (operations{, andY,). Fix a smalle > 0. LetC, (D,) be thes-neighborhood
of cin C (of d in D, respectively). FoZ c T, x T, let
Xe(2)={z € Z: card(Z N (pxz x T,))) > 1 and eithemp,z € D, or
card(Z N (T, x pyz)) > 1},

Ye(Z) ={z € Z: card(Z N (T,, x pyz)) > 1 and eithep,z € C, or
card(Z N (pez x Tp)) > 1}.
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Definition (a strongly basic embedding). An embedding: 7,, x T, is called strongly
basic (and denoted b¥ c;, T, x T,), if there existe > 0 and an integek such that
X’g(Z) = Ys"(Z) ={. Thene is called asuitablevalue for the strongly basic embedding.

Let us make the following remarks. Evidently, 4f is strongly basically embeddable
into 7, x T,, then Z is basically embeddable intd,, x T,. Clearly, if Z Cc T, x T,
and X’g(Z), Ys"(Z) are strongly basic embedded infpy x 7, for somek ande, thenZ
is strongly basic embedded infQ, x T,,. Obviously, if X C Y andY is strongly basic
embeddedintd@;, x T,, thenX is strongly basic embedded infy, x 7,. These statements
shall be used in this section.

Now we shall present the scheme of our construction. Strongly basic embeddability
of a simple admissible tree follows from Lemmas 5.3-5.5 below. In Lemma 5.3, using
Proposition 5.2, we embed a horizontal loaded leaf. Evidently, Lemma 5.3 remains true if
we replace the horizontal loaded leaf by a vertical loaded leaf. In Lemma 5.4 we embed
a loaded leaf/ with the end, assuming that all satisfactory pointg/dfefore the end of
J and the end itself are horizontal, and the others are vertical (cf. (4.2.2b)). Obviously,
Lemma 5.4 remains true if we replace all satisfactory horizontal points loéfore the
end of J and the end itself by vertical, others by horizontal. In Lemma 5.5 we extend an
embedding constructed in Lemma 5.4 to a simple admissible tree. Basic embeddability
of a complete admissible tree follows from these lemmas and Lemma 5.6. The following
constructions are simplified for basic embeddings Rta 7;,. In this case, strongly basic
embeddability follows only from Lemma 5.3 and Steps 2, 3 in Lemma 5.5.

Proposition 5.2. Let K be a leaf,/ = [0, 1] be its hanging edgéhe vertex0 is its roof).
Then there is a basic embedding

(k. K =[0.3).[0.3).0) > (10. 1% [3.2°. [0.0). (3. 3)]. ©.0)) (see Fig3).
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Proof. By [8, Theorem 1]K — [0, %) is basically embeddable infe?. It follows from [8,
property F, p. 40] that there is a basic embedding

2
(k-[0.3).3)~(3.1°G.9)
The square%, 112 is called theblack squaref K . In Fig. 3 the black square is represented
by the dashed square

Evidently, we may assume that there are both a hanging edge and a leaf at each excellent
point of an admissible tree, and also that there is a hanging edge at each good point.
Further, for an arbitrary séW, if g: W — T, x T, is an embedding, then by’ we
mean g(W) C T,, x T,’. And also ifa, b € K are two distinct points of a tre§, then by
‘ab’ we mean the arc irK with endpointsz, b.

Definition (the shadow). LeW;, W» C T,,, x T, be two arbitrary sets. The shadowWi
is (px W1 x T,) U (T,, x pyW1). The shadow o#¥1 on W2 is the intersection of the shadow
of W1 with Wo.

Lemma 5.3. Let J be a tree basically embeddable ini?. Take a hanging vertex
r € J and an arbitrary set of distinct point&alled satisfactoryin the interior of edges
of J. Then there is a strongly basic embedding/ — [0, +00) x [0, +00) such that

g(r) =0 x 0and all satisfactory points af lie in [0, +0c0) x 0.

Proof. Evidently, we may find in the treg a filtration satisfying conditions (4.2.1)
and (4.2.2a). Hence we may assume that a horizontal loaded leaf (without a functign
satisfying®). The example of a strongly basic embedding is shown in Fig. 4, where we
alter the quadran{0, +o0) x [0, +00), 0 x 0) to the rectangl€A x B, a x ).

For simplicity, in Fig. 4 we do not show the hanging edges of excellent and good
points. Dashed lines show some shadows of leaves-araighborhoods for strongly basic
embeddings. In Steps 1-3 below we embkdavithout leaves and hanging edges. The
extension on leaves and hanging edges is constructed in Steps 4, 5, respectively. Fix a
filtration U c Iy C --- C I; C J from the definition of/ (see Sections 4.1 and 4.2). Let
up=r,ui,...,u; be all satisfactory points df by the order fronr.

Stepl (the ‘decrease of the embedding’ trjck=irst we construct a strongly basic
embedding; : U — A x B using the following rules (see Fig. 4):

63D r=axpB,ui,...,uj€Axg,;

(5.3.2) u; liesin A x g to theright ofu;_1,i =1,...,1;

(5.3.3) projections undey, of all excellent and good points af_1u; lie in A higher

than those of the aragu; 1, ..., u;—1u;.

Step2 (the ‘jump along the axis’ trick Take the last good point€ u;_1u; C U by the
order fromr (if there is no such point, then we omit this step). Ligtbe the connected
component of(/ — U) U g containingg. Then J; is the horizontal loaded leaf with the
rootq. Split the hanging edge @f in J1 into three parts by pointg andg,. Extendg to
492 = qq1 Y q1q2 linearly so that

(5.3.4) pyq1 € py(u;—1u;) lies in A higher thanp,q;
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(5.3.5) prq1liesin A x B to the right ofp,u;

(5.3.6) g2 liesin A x B to the right ofp, ¢1;

(5.3.7) the shadow ofgg1 — ¢) on U and all excellent and good points &f are

mutually disjoint.

Step3 (the ‘e-decrease of the embedding’ trickix a suitables for the strongly basic
embeddingg on U U gg2. Take two arcsAg C A and By C g2 x B with the common
endpointgz so that

(5.3.8) Ag — g2 lies in A x B to the right ofgz, p,Bo C B,.

Obviously, we may assumg is a satisfactory point angp is the root of the loaded leaf
(J1— qq2) U g2. Extendg to the arcU; C (J1 — gg2) U g2 (the first pre-loaded leaf in the
loaded leaf without leaves and hanging edges) analogous to Step 1. Further, as in Step 2 we
take the last good point df1 in the order frony,, and so on, until we embed the whole
loaded leafJ1 — gg2) U g2 (without leaves and hanging edges). Evidently,

X3Wun),Y3UUJ)Ci—qqCyp Cx D

for somee. Henceg is a strongly basic embedding. Clearly, the maximal suitatfer
gluuy, is less than that fog| . After that, we analogously embed loaded leaves beginning
at other good points df/. So, it remains to embed leaves at excellent points and hanging
edges at excellent and good points/of

Step4 (the embedding of leaves$-or a leafL at the excellent pointe J we take a basic
embedding;: L — A’ x B’ from Proposition 5.2, whereis the common endpoint of arcs
A’, B’ and such that
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(5.3.9) all the shadows of leaves drand all good points of are mutually disjoint.
Sinceg|; is strongly basic (heré has no leaves and hanging edges), then for Sgrme
we have thaik* (/) andY*(J) (hereJ has all leaves and has no hanging edges) consist of
some leaves basically embedded idtex B such that its projections oA x 8 anda x B
are mutually disjoint. Hence the extension is strongly basic.
Step5 (the embedding of hanging edyeSmbed each hanging edge as a horizontal arc
so that
(5.3.10) all the shadows od of ‘black squares’ and hanging edges are mutually
disjoint.
As in Step 4, the extension is strongly basici

Lemma 5.4. Let J be a tree basically embeddable inkf. Take two hanging vertices
r,a € J (called the root and the end of, respectively. And also take an arbitrary set of
distinct points(called satisfactoryin the interior of edges of such that all satisfactory
points beforez (see the definition of the order in Sectiér2) and« itself are horizontal,
others are vertical. Then there is a strongly basic embedging — C x D such that
g(r) = ¢ x d, all horizontal (vertical) satisfactory points of/ lie in C x d (¢ x D,
respectivelyanda lies in C x d to the right ofp, (J — a).

Proof. Evidently, we may find in the treg a filtration satisfying conditions (4.2.1)
and (4.2.2b). Hence we may assurhé a loaded leaf with the end (without a functipn
satisfying @). Further we embed without leaves and hanging edges. The extension
on leaves and hanging edges is constructed analogous to Steps 4, 5 in Lemma 5.3. Fix
a filtration Iy C --- C Iy c J from the definition ofJ. Let vg = r,v1, ..., v be all
satisfactory points of1 by the order from the root. Let V; be the bridge inJ with
endpointsv;_1, v;. Let the bridgeV; 1 contain the end: (in Fig. 4,i = 1). If a # viy1,
then we may assume there is only one verte¥;iri: a good point such that the loaded
leafin J — I1 beginning ab contains the end. Actually, in the opposite case we take two
pointsv;, v;, , € I nearb (call them satisfactory, put(v)) = ¢ (v; ) = 0) such that there

is only one vertex» in the arCz)lfvlfH. LetV be the arav; C I1.

Stepl (the ‘increase of the embedding’ trickcf. Step 1 in Lemma 5.3). First we shall
construct a strongly basic embeddipgV — C x D. The caseV = r is obvious. We
linearly defineg on V using the following rules (see Fig. 4):

(5.41)r=cxd,andvy,...,v; € C x d,;

(5.4.2) vj liesinC x d to therightofv;_1, j =1,...,1;

(5.4.3) projections undep, of all excellent and good points afjv;;1 lie in ¢ x D

higher than those of the aresy, ..., vj_1v;.

Step? (the ‘jump to the other axis’ trick(cf. Step 2 in Lemma 5.3). Here we exteatb
bridgesVi, ..., V;. Evidently, all satisfactory points of the bridges, except their ends, are
vertical. Take the first good poiat of rv1 by the order fronr. Let J; be the connected
component of J — rv1) U ap containinga;. Split the hanging edge af; in J; into two
parts by a pointz. Then(Jy — ai1a2) U az is the vertical loaded leaf beginningat Lete



V. Kurlin / Topology and its Applications 102 (2000) 113-137 129

be a suitable value for the strongly basic embedding Extendg to ajaz linearly and to
(J1 — a1a2) Uaz by Lemma 5.3 (for a vertical branch) so that

(5.4.4) az liesinc x D higher thanp,as;

(5.4.5) py(J1 — a1az) C py(rvy) liesinc x D higher tharuy;

(5-4-6) px(J1 —ara2) C Cq;

(5.4.7) the shadow of — aiaz on rv1 and all excellent and good points of;, are

mutually disjoint.
Evidently,

X2(V U ), Y2(V UJ1) C J1—araz Cgp C X D

for somee. Henceg is a strongly basic embedding. Clearly, the maximal suitabier
glvuy, is less than that fog|y . After that, we analogously embed vertical loaded leaves
beginning at other good points &f. So, we have now defined the strongly basic embedding
onVop=ViU---UV,;.

Step3 (the ‘s-decrease of the embedding’ trjcfcf. Step 3 in Lemma 5.3). lf = v; 41,
i.e.,i =1—1, then we exteng to V;;1 as in Step 2. After that the proof is finished. In the
opposite case, extendto v;v;+1 linearly using the following rule:

(5.4.8) pyb lies inc x D higher thanp, Vo, v; 41 lies in C x d to the right ofp,b.

Clearly, g on Vo U v;v;41 is strongly basic. Let/o be the connected component of
(J —v;jvi+1) Uv;41 containingu; 1. Evidently, Jg is the horizontal loaded leaf. Letbe a
suitable value for the strongly basic embedditg,u., v, .- Extendg to Jo by Lemma 5.3
using the following rule (cf. (5.3.8)):

(5.4.9) pxJo liesinC x d to the right ofv; 11 andpy Jo C Ds.

Sinceg|vyuy v, 1S @ strongly basic embedding, then therearesuch that

X (Vo U vjvit1 U Jo), YE(Vo U vivi41 U Jo) € Jo Cspp € x D.

Hence the extension is strongly basic.

Step4 (the ‘splitting of the embedding into layers’ trickSuppose that € I; — I;_1
(j-layer) is contained in the loaded le&f beginning ath € v;v;4+1 (in Fig. 4, j = 2).
The proof is by induction orj. Basej =1, i.e.,a = v;1+1, was already proved. Inductive
step. Split the hanging edge éfin P into three parts by point$; and b2. Extend
g to bby = bby U b1by linearly as in Step 3 of Lemma 5.3 (the ‘jump along the axis
trick). Clearly, if 7; C --- C I, is afiltration for the loaded leaP, thena € I} _; — I},
((j — D-layer) is contained in the loaded le@ — bb2) U b2 beginning ab» € I». By the
inductive hypothesis there is an extensiorgdb P — bb; such that (see the ‘increase of
the embedding’ trick)

(5.4.10) ife is a suitable real for the strongly basic embeddingn P — bb», then

(J — P)Ubbs C Cy x Ds.
Evidently, the embedding is strongly basic. O

Lemma 5.5. Let G be a simple admissible tree. Suppose that there is a strongly basic
embedding : J1 — C x D such that = ¢ x d, all horizontal(vertical) satisfactory points
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of J1 liein C x d (¢ x D, respectivelyand if /1 has the end:, thena lies either to the
right of or higher than/y — a. Then there is an extension

g8:G—> (T, x D)U(C xTy,)

such that all horizontafvertical) satisfactory points of; lie in C x d (c x D, respectively.

Proof. Stepl (aloaded leaf at the end of the previduiirst suppose that has the end.
There is a strongly basic embedding

g:(J1,a) — (C’ x D', ¢’ x d’),

whereC’ and D’ are subarcs of and D containingc andd, respectively, and’ x d’
is either the lower right or the upper left vertex of the squdfex D’. Without loss of
generality we may assume thats the lower right vertex of the square. Take a loaded leaf
R C J2 — J1 beginning atz. In the case when the second satisfactory poink dfy the
order froma is horizontal, exteng to R by Lemma 5.3 such that

(5.5.1) Ife is a suitable real fog| g, thenJ1 Cc Cs x Ds.

Suppose that the second satisfactory poinRobrdered froma is vertical. Split the
hanging edge aof in R into three parts by pointg andrp. Extendg to arp = ari1 U rirp
linearly such that

(5.5.2) pxr1liesinC x d to the right ofa andp,ry lies inc x D higher thanp, J1;

(5.5.3) rz liesinc x D higher thanp,r.

Extendg to R — arp by Lemma 5.3 (for a vertical branch) so that

(5.5.4) ife is a suitable value fog|g—gr,, thenJy Uars C Ce x Dg.

Note that after this step there are exaapliz) non-embedded loaded leavesmin
Jo — J1. If the loaded leafR has the end, then we apply the previousRtinstead of/y,
and so on, until we embed a subtidec G and the last embedded loaded leaMinhas
no end.

Step2 (the ‘choice of pages’ trick Suppose that there is a non-embedded loaded leaf
S of a satisfactory point € W — r. Without loss of generality we may assume thas
horizontal. Split the hanging edge ofn S into three parts by pointg ands;. Sinces is
horizontal, then by®.(b) we may take a ‘free page’ @ x T, (i.e., a ‘page’C x D’ not
containing the already embedded subtre&pivhereD’ is a ‘ray’ of T;,). Linearly extend
g to ss2 = 551 U s1s2 using the following rules:

(5.5.5) pys1 liesin C x d to the right of p, (W U ss1);

(5.5.6) s2 lies in C x d to the right ofp,.s1.

After that, extengg to S — ss2 by Lemma 5.3 (cf. Step 1 of Lemma 5.4) so that

(5.5.7) ife is a suitable value fog|s_ss,, thenW Uss; C Ce x D,.

Evidently, the embedding is strongly basic. Actually,

X2(WUS), Y2(WUS) CWU(S —ss1) Cgp C x D.

After that, we analogously embed other loaded leaves.of
Step3. Now it remains to embed only loaded leaves beginning at the-robf; . By the
construction ofG, the rootr has¢ (r) + 2 loaded leaves iii;. Clearly, we have already
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embedded exactly one of these loaded leavesintd (the loaded leaf1). First consider
the partial case: = 2. Then, by propertyp we may embed firsp (r) loaded leaves at
into C x T, the last branch atinto (R — C) x D analogous to Step 2. In the general case
@.(b) implies that we can find/ and N such thatp(r) + 1= M + N and

M+¢a) +---+la) <n—1, N+¢b)+---+¢b)<m—1,

whereas, ..., ar andby, ..., b; are all horizontal and vertical satisfactory points®df- r,
respectively. Thus, we may apply the ‘choice of pages’ trick as follows. First we eMbed
loaded leaves of into ‘free pages’ ofC x T,; the otherN loaded leaves we embed into
‘free pages’ ofT,, x D. O

Lemma 5.6. Let K be a complete admissible tree atid= (K — H) U h the respective
simple admissible tree. Suppose that there is a strongly basic embedding

¢:G — (C x T,) U (T, x D)

such that all satisfactory points @f lie either inC x d or in ¢ x D. Then there is a basic
embedding

fiK — (C x T,) U (T, x D)
such thatf|g = g.

Proof. Put f|g = g. Sinceg is a strongly basic embedding, then there exist a #eaid
an integerk such thatX’g(G) = YS"(G) =@.If he C xd (c x D) then we embed{ into
C x D as avertical (horizontal) arc such thatH C D, (pxH C C,, respectively). Since
XX(K), Y*(K) Cc H,thenf is a basic embedding.0

6. Proof of sufficiency in Theorem 1.4
Theorem 6.1. A connected tree satisfying conditih4.1)is an admissible tree.

Our aim is to select some filtrations K satisfying conditions (4.2.1), (4.2.2), (4.3.1)
and to call some vertices & either excellent or good, or satisfactory, and to call each
satisfactory point either horizontal or vertical such that the properlds. In the partial
casen = 2, the following constructions are simplified as follows. We may take an arbitrary
root and® follows froms(G) <n — 1.

If §(K) <m+n—2,thensetG = K. In the opposite case, It be K without a hanging
edge atadryvertex & . Thus,§(G) < m+n —3. So, it suffices to prove thét is a simple
admissible tree. Call each bad vertextofsatisfactory. For each satisfactory pobrt G,
sety (b) =degh —2in G. Then propertyp.(a) follows froms (G) < m+n — 3. Take a bad
vertexr € G having the maximal number of leaves (fé} in G by comparison with other
bad vertices of5. Call r both the root ofG and the satisfactory point. ¥fis a unique bad
vertex of G, thenG is a wedge of leaves. Evidently, in this case propértfb) holds, i.e.,

G is a simple admissible tree. In the opposite case, consider the clésafra connected
component of; — a, containing a bad vertex af.
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6.1. Selection of a pre-loaded leaf

We shall go along a patti C A beginning at, until we meet a verteit € A. Evidently,
only the following cases are possible:

(1) bis a non-bad vertex, having either a leaf or a hanging edge or both a hanging edge

and a leaf (calb an excellent point);

(2) b is a non-bad vertex without leaves and possibly having a hanging edgé @all

good point);

(3) bis a bad vertex (cab a satisfactory point).

In the first and second cases, we go along a non-passed eddge af In the third case,
we have eithep () <n—1or¢(b) < m— 1. Actually, in the opposite case (i.e.(b) > n
and¢(b) > m) let b haveM leaves, i.e., there are deg- M — 1 non-passed connected
components ofA — b containing a bad vertex. Evidently, for each such compoBenwe
haves(B) > 1. We obtain

m+n—328(G)=>N—-1+¢()+ (degh— M —1).
Since¢p(b) > m andded = (b) +2>n + 2, then
m+n—-3>N-1+m+n+2—-M-1,

i.e.,,M > N + 3, that is contradicted by the choice of the reot
Suppose that we already met satisfactory paints. ., a; (and called them horizontal)
andbs, ..., b; (and called them vertical), aridis not in these lists. Set

Sx=¢@)+ -+oa), 8 =¢0b)+ - +pa).

At the very beginning, = §, = 0. Then for a current meeting vertéx we have either
Sx+¢ () <n—1ord, +¢(b) <m— 1. The formal proof is analogous to that above: we
alter the inequalitie® (b) > n, ¢ (b) > m and

8(G)=N—1+¢(b)+ (degh— M — 1)
ondy + ¢ (b) >n andsy, + ¢(b) >m and
8(G)2N—1+4+6,+6y+¢(b)+ (degh— M —1),

respectively. Suppose the previous vertex was called horizonsgl-Hfp (b) > n, then we
stop at the previous step.df + ¢ (b) < n — 1, then we calb horizontal. If also has a leaf,
then we stop. In the opposite case, we go along a non-passed dddgehaf, we construct
U until we stop. Sincé, <n —1ands, <m — 1, thend.(b) holds./; is obtained fron/
by gluing toU hanging edges and leaves frotmat each respective excellent pointf
Clearly, I1 is a pre-loaded leaf with the rost

6.2. Selection of a loaded leaf

Evidently, only the following cases are possible:
(1) The end: of I1 has a leaf inA.
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(2) The end: of I1 has no leaves id, i.e., if a is horizontal (vertical), then for the next
vertexb € A we haves, + ¢ (b) > n (8, + ¢ (b) > m, respectively).

In the first case, we proceed as in Section 6.1 to select a pre-loaded leaf of the last good
point of I by the order fronr, and so on, until either we sort out all good points4obr
we get the case (2). In the second case, without loss of generality we may assumis that
horizontal, i.e.§, + ¢ (b) > n. Then we select pre-loaded leaves analogous to the case (1)
with the following alterations: we start at the first (not the last) good point by the
order fromr) having a pre-loaded leaf and we call all bad vertices vertical. Moreover,
@.(b) holds. Actually, if we ges, + ¢ (s) > m for a current satisfactory poiste A, then
we obtain

m+n—326(G)=26:+¢b)+8,+¢(s)=>m+n,

and that is a contradictior; is obtained from/; by gluing to7; hanging edges and pre-
loaded leaves at respective good pointgiirand so onJs is obtained fromi by gluing
to I a leaf fromA at each end (excep) of pre-loaded leaves if.. So, by definition (see
Section 4.2)/1 is a loaded leaf; is the root, and is the end.

6.3. Selection of a simple admissible tree

Now, as in Section 6.2, we select loaded leaves at satisfactory poisitdHdnced.(b)
holds. J> is obtained fromJ/1 by gluing to J; either¢ (b) = degb — 2 (if b # r is not the
end ofJ1) or ¢ (b) + 1 =degh — 1 (if eitherd is the end of/1 or b = r) respective loaded
leaves fromG at each satisfactory poihte J1, and so on, until we get = G.

7. Proofs of Corollaries 1.2 and 1.3

Proof of Corollary 1.2. It follows from Theorem 1.1 that in the cage= 3, if a finite
graphK is basically embeddable infR x 73, thens(K) < 3 or§(K) =3 andK has a
dry vertex. ClearlyK does not contain any of the graphs of Fig. 1. Evideritly,satisfies
conditions of Theorem 1.1 for eaeh HenceW, is basically embeddable inf& x 73 for
eachn. So, it suffices to prove that Corollary 1.2(a) implies Corollary 1.2(b). It follows
from Corollary 1.2(a) that:

(1) all vertices ofK have degree less than five or have degree five and a hanging edge;

(2) there are no two vertices @&f either having degree five or having degree four and

without hanging edges.

Take a vertexa € K of maximal degree. By we denote the closure of a connected
component ofK — a. It follows from (2) thatF is a leaf. Then by Lemma 7.1 below,
F is contained inV, for somen. It follows from (1) thatK c W, for somen, i.e.,
Corollary 1.2(b) holds. O

Lemma7.1. A leaf F is contained inV,, for somen.
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Proof. Let G be a treeF after elimination of one hanging edge at every non-hanging
vertex of K (if this edge exists). Then by Lemma 7.2 bel@éc U, for somen. Hence,
by construction oV,,, F C V, for somen. 0O

Lemma 7.2. Let G be a finite tree. Suppose that all verticesohave degree less than
four. ThenG is contained inU, for somen.

Proof. Let N be the number of all non-hanging vertices@f Let us prove that there
exists an embedding c Uy such that the root of/y corresponds to a hanging vertex
of G. Induction onN. BaseN = 1 is obvious. To prove the inductive step, létbe a
hanging edge ofs with the non-hanging endpoirt. Then to A assign an edg® of
Uy = Tz such that the center of T3 corresponds ta. Since deg < 4, then there are
at most two connected components (denote its closuredibgnd Hz) of G — A. The
number of all non-hanging vertices fd{; and H, is less than that folG. Moreover,
by construction ofUy, the closures of two connected componentd/af — B are two
copies ofUy—_1. Then, by the inductive hypothesis, there exist embeddhigs Un_1,
Hy C Uy—-1 such that roots of two copieEy_1 correspond taz. So, we obtain an
embeddingG =AUH1UH, C BUUN_1UUy_1=Uy. O

Proof of Corollary 1.3. Consider the set of finite tree§ such that eithes(K) > n

or §(K) =n and K has no dry vertices; and al$gK) < 2n. From these trees, choose
minimal by inclusion trees and call thgorohibitedfor R x 7,. It follows from Lemma 7.3

that there are only a finite number of prohibited trees. So, it suffices to prove that a finite
graphK is basically embeddable infR x 7,, if and only if K is a tree andk does not
contain any of prohibited trees f@® x 7,,. Evidently, if K is basically embeddable into

R x T,, then by Theorem 1.1 does not contain any prohibited trees.

Now suppose thak does not contain any prohibited trees akidis not basically
embeddable int® x 7,,. Henced(K) > 2n. Without loss of generality we may assume
that K is connected. For each bad vertex K we have deg < n + 2. Actually, in the
opposite cas&X contains the prohibited tre€, 3. Evidently, there exists a bad vertex
r € K having only one connected componéhbf K — r with a bad vertex oK. Let K
be the closure of;. Hencek; C K,

8(K) > 8(K1) = 8(K) — (degr — 2) > n,

and we may apply the previous K. In some step, we g&; C K andn < §(K;) < 2n.
Consequentlyk contains one of the prohibited trees. This is a contradictian.

Lemma 7.3. For each integek > 1 there are a finite number of minimal by inclusion trees
K such that(K) < k.

Proof. It suffices to prove that there are a finite number of minimal by inclusion tkees
with §(K) = k. Evidently, a minimal by inclusion tree is a union of some stars. Each bad
vertexb € K contributes deg — 2 into §(K) = k. Evidently, there are a finite number of
ways to split§ (K) = k into a sum of positive integers. Consequently, for each tepn?
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in §(K) = k we may take a star with+ 2 rays, and also there are a finite number of ways
to connect a finite number of stars to a finite tl€eSo, Lemma 7.3 is proved.O

8. Conjectures
The first conjecture is the following criterion for basic embeddability iftox T,.

Conjecture 8.1. A finite (not necessarily connected) graftis basically embeddable into
T, x T, if and only if K is a tree and either (1.4.1) or (1.4.2) holds.

By Theorem 1.4, it suffices to prove that if for a finite tr&econdition (1.4.2) holds,
thenK is basically embeddable in®, x T,,.

Analogous to the proof of Corollary 1.3, Conjecture 8.1 implies the following Conjec-
ture 8.2. But, possibly Conjecture 8.2 can be proved independently of Conjecture 8.1.

Conjecture 8.2. There exists only a finite number of ‘prohibited’ subgraphs for basic
embeddings intd;,, x T,. Consequently, for a finite grapki there is an algorithm for
checking whethek is basically embeddable int®, x T,,.

Now we shall formulate a conjecture for basic embeddability @te R, whereG is a
finite connected tree. Let be the set of all non-hanging vertices@f Let R be the set of
all bad vertices of a finite grapki. For a mapy : R — A, let

Sra(K)= Y (degr—2).

reR: x(r)=a

Conjecture 8.3. A finite (not necessarily connected) graftis basically embeddable into
G x Rifand only if K is a tree and there exists a mapR — A such that for each € A
eithers, ,(K) < dega or 8, ,(K) =dega and there is a dry vertexe R with x(r) = a.

The following conjecture is for basic embeddings into a cylinflex R and a torus
S xS.

Conjecture 8.4.
(a) A finite graphK is basically embeddable int® x R if and only if K does not
contain any of the graphs of Fig. 5;
(b) Afinite graphk is basically embeddable intx S if and only if K does not contain
any of the graphs of Fig. 6.

Theorem 1.1 consists of two parts: a natural one involving the defect and an unnatural
one involving horrid and awful vertices. One can conjecture that this theorem is a partial
case of some combinatorial (not topological) one, involving defect but not involving
horrid or awful vertices, just as the Kuratowski theorem and the Archedeacon—Hunecke
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description of graphs embeddable ifk8 andR P2 are partial cases of the Robertson—
Seymor theorem on graph minors.

Conjecture 8.5. Suppose that is a finite family of graphs with base points. Call a family
M of graphsA-good if

(1) if K € M, then every subgraph & isin M;

(2) if K € M, x € K and the closurd. of a connected component & — x does not

contain (topologically) subgraphs from the family then(K /L) € M.

Then for eachi-good familyM there is a numbeN such thatk € M if and only if the
defect ofK is less thanV. The defectis the sus(K) = (degA; — 2) + - - -+ (degA; — 2)
over all verticesAy, ..., A; of K that are base points of some subgrdph A of K.
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