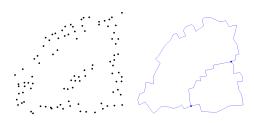
Homologically Persistent Skeleton for a 2D cloud of features

Vitaliy Kurlin, kurlin.org, Microsoft Research Cambridge and Durham University, UK

Motivation: fast and robust recognizing visual markers



- simple pictures like hieroglyphs are easily readable by humans;
- machines should correctly reconstruct skeletons from noisy scans.

Skeletonization problem:

Given only a cloud *C* of points, find a graph representing the topology of *C* across all scales.

All past methods use extra input parameters: a scale, noise bound.

New solution: Homologically Persistent Skeleton HoPeS(*C*)

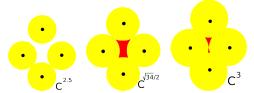
- extends a Min Spanning Tree;
- depends only on the cloud *C*;
- has *min length* among all graphs that span *C* at any scale and also have most persistent 1D cycles;

• has derived subgraphs with the correct topological type of a graph $G \subset \mathbb{R}^2$ given only by a sample *C*;

• is *globally stable* under perturbations of *C*, remains in an offset C^{α} within a distance α from $C \subset \mathbb{R}^2$.

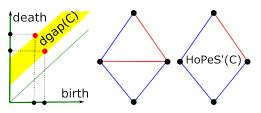
Def: HoPeS(*C*) of a cloud *C*

When the scale α is increasing, the offset C^{α} is growing, cycles in C^{α} are born and die (become filled).

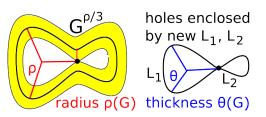


The pairs (birth, death) form the 1D *persistence diagram* $PD\{C^{\alpha}\}$.

Earlier applications of persistence: counting holes in clouds [2], auto-completing closed contours [3].



HoPeS(*C*) is a Min Spanning Tree of *C* plus all red edges giving birth to new cycles in C^{α} across all α .



If cycle $L \subset G$ encloses a hole, its *radius* ρ is min α when L^{α} is contractible. The *thickness* $\theta(G)$ is max radius of all newborn cycles in G^{α} .

Reconstruction guarantees

An ε -sample C of a graph $G \subset \mathbb{R}^2$ is a cloud $C \subset G^{\varepsilon}$ with $C^{\varepsilon} \supset G$.

Th (VK). Let *C* be an ε -sample of a graph $G \subset \mathbb{R}^2$ with $\theta(G) \ge 0$ and radii $\rho_1 \le \ldots \le \rho_m$. If $\rho_1 > 7\varepsilon + \theta(G) + \max_{i=1,\ldots,m-1} \{\rho_{i+1} - \rho_i\}$, then

HoPeS'(*C*) ~ *G* is 2 ε -close to *G*.

[4]: extension to a metric space.

Summary and References

input: a noisy point cloud $C \subset \mathbb{R}^2$

output: full skeleton HoPeS(*C*) with all derived subgraphs;

running time: $O(n \log n)$ for any *n* points with real 2D coordinates;

more details: C++ code, papers,
examples at http://kurlin.org.

[1] H. Edelsbrunner and J. Harer. *Computational topology*. AMS'10.

[2] V. Kurlin. A fast and robust algorithm to count persistent holes in noisy 2D clouds. *CVPR* 2014.

[3] V. Kurlin. Auto-completion of contours in sketches, maps and sparse 2D images. *CTIC 2014*.

[4] V. Kurlin. Homologically Persistent Skeleton of a point cloud in any metric space. *Computer Graphics Forum*, v. 34-5 (2015), 253-262.

1) cloud *C* of Canny edge points. 2) $PD{C^{\alpha}}$. 3) HoPeS_{1,1}(*C*) for 1st widest gap. 4) HoPeS_{2,1}(*C*) for 2nd widest gap.

