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Motivation: fast and robust
recognizing visual markers

• simple pictures like hieroglyphs
are easily readable by humans;

•machines should correctly recon-
struct skeletons from noisy scans.

Skeletonization problem:
Given only a cloud C of points,
find a graph representing the
topology of C across all scales.

All past methods use extra input
parameters: a scale, noise bound.

New solution: Homologically
Persistent Skeleton HoPeS(C)

• extends a Min Spanning Tree;

• depends only on the cloud C;

• has min length among all graphs
that span C at any scale and also
have most persistent 1D cycles;

• has derived subgraphs with the
correct topological type of a graph
G ⊂ R2 given only by a sample C;

• is globally stable under perturba-
tions of C, remains in an offset Cα

within a distance α from C ⊂ R2.

Def: HoPeS(C) of a cloud C

When the scale α is increasing, the
offset Cα is growing, cycles in Cα

are born and die (become filled).

The pairs (birth, death) form the
1D persistence diagram PD{Cα}.

Earlier applications of persistence:
counting holes in clouds [2], auto-
completing closed contours [3].

HoPeS(C) is a Min Spanning Tree
of C plus all red edges giving birth
to new cycles in Cα across all α.

If cycle L ⊂ G encloses a hole, its
radius ρ is min α when Lα is con-
tractible. The thickness θ(G) is max
radius of all newborn cycles in Gα.

Reconstruction guarantees

An ε-sample C of a graph G ⊂ R2

is a cloud C ⊂ Gε with Cε ⊃ G.

Th (VK). Let C be an ε-sample of a
graph G ⊂ R2 with θ(G) ≥ 0 and
radii ρ1 ≤ . . . ≤ ρm. If ρ1 > 7ε +
θ(G) + max

i=1,...,m−1
{ρi+1 − ρi}, then

HoPeS′(C) ∼ G is 2ε-close to G.

[4]: extension to a metric space.

Summary and References
input: a noisy point cloud C ⊂ R2

output: full skeleton HoPeS(C)
with all derived subgraphs;

running time: O(n log n) for any n
points with real 2D coordinates;

more details: C++ code, papers,
examples at http://kurlin.org.
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1) cloud C of Canny edge points. 2) PD{Cα}. 3) HoPeS1,1(C) for 1st widest gap. 4) HoPeS2,1(C) for 2nd widest gap.
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