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ABSTRACT. A semigroup with 15 generators and 84 relations is constructed. The center of the
semigroup is in a one-to-one correspondence with the set of all isotopy classes of nonoriented
singular knots (links with finitely many double intersections in general position) in R3.
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1. Introduction

1.1. Statement of the problem and the results. We develop the Dynnikov method of three-
page embeddings for links with singularities of the following type: finitely many double intersections
in general position are possible. More precisely, the isotopy classification problem is solved for
nonoriented singular knots in R3. The key idea is to construct suitable three-page embeddings for
neighborhoods of singular points in a given singular knot. In particular, this construction makes it
possible to reduce the number of generators and defining relations in the universal semigroup for
singular knots.

1.2. Review of the previous results. An embedding of a link in a structure resembling
an open book with finitely many pages was probably for the first time considered by Brunn in
1898 [4]. Namely, he proved that each knot is isotopic to a knot that is projected to the plane
R? with only one singular point. Later such embeddings were studied in [5-7] and were used
in [3]. These investigations provided a new link invariant, the arc index [5,7,19]. It turned out
that each link can be embedded in a book with only 3 pages. In 1999 Dynnikov classified all
nonoriented links in R? up to ambient isotopy encoding them by three-page diagrams [9,10]. More
precisely, we call these diagrams three-page embeddings (for the definition, see Sec. 2.1). Dynnikov
constructed a semigroup whose center is in a one-to-one correspondence with the set of all isotopy
classes of nonoriented (regular) links in R3. Applying embeddings in a book with arbitrary many
pages, Dynnikov reduced the number of relations in his semigroup [11]. Similarly, the first author
established an isotopic classification of nonoriented knotted 3-valent graphs in R3 [18].

1.3. Motivation. Singular knots were called chimerical graphs in [15] and four-valent graphs
with rigid vertices in [16]. The study of singular knots and braids was motivated by the theory
of Vassiliev invariants [2]. The corresponding algebraic object in braids is called the Baez—Birman
monoid or singular braid monoid [1,2]. Some of its properties were investigated in [8,12, 14]. For
singular braids, an analog of Markov’s theorem was proved [13]. Many invariants of regular (nonsin-
gular) links, in particular, the Alexander—-Conway and Jones polynomials and Vassiliev invariants
were constructed for singular knots [15-17,20]. Homological properties of singular braids on infin-
itely many strings were studied by the second author [22, 23].

1.4. Main definitions. We work in the PL-category, i.e., the images of circles under an
immersion in R? are finite polygonal lines. Formally, a singular knot is an immersion of several
circles in R3 with possible double intersections in general position at finitely many singular points
(Figs. 1 and 2). Two branches of a given singular knot pass through each singular point. In the
present paper (except Sec. 3.5), we consider only nonoriented singular knots, possibly disconnected.
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Note that singular knots are 4-valent graphs embedded in R?. An ambient PL-isotopy between two
graphs is a continuous family of PL-homeomorphisms ¢;: R?* — R3, ¢t € [0,1], such that ¢g = id
and ¢ sends one graph to another. Singular knots are considered up to rigid ambient PL-isotopy.
By definition, any rigid isotopy preserves the rigidity (or template by the terminology in [15]) of
each singular point. If we allow also nonrigid isotopies, then we arrive at the notion of a knuckle
4-valent graph (a graph with nonrigid vertices according to the terminology in [16]). In contrast to
the case of singular knots, an isotopy of knuckle graphs can arbitrarily permute the edges at each
vertex. In Sec. 3.5, we state classification Theorem 5 for knuckle 4-valent graphs. By analogy with
regular links, one can represent singular knots by plane diagrams modulo the Reidemeister moves
R1-R5 (see Fig. 1) [15]. We present only PL-analog of the corresponding smooth moves omitting
subdivisions and edge breaks. In the case of knuckle 4-valent graphs, the move R5 is taken instead
of R5.

g8 A YA
X X M § MM

Fig. 1. Reidemeister moves for singular knots and knuckle graphs

1.5. The universal semigroup for singular knots. Everywhere below, the index i belongs
to the group Zs = {0,1,2}. Consider the alphabet A = {a;, b;,¢;,d;, z;, i € Z3} with 15 letters.
(For their geometrical interpretation, see Fig. 3.) Let SK be the semigroup with 15 generators in
the alphabet A and the following relations (1)—(10), which correspond to some “elementary ambient
isotopies” of singular knots in R3:

a; = aiy1di-1, b =a;i-1¢i41, ¢ =bi—1¢iv1,  di = ai41¢-1, (1)

ri = diy17i-1bit1, (2)

dodidy =1, (3)

bid; = d;b; =1, (4)

dixid; = a;j(dizid;)c;,  bixib; = a;(bjxib;)c, (5)
vi(diy1didi—1) = (diy1didi—1)x;, (6)

(dici)w = w(d;c;), where w € {¢iy1,Tit1,bidiv1d;}, (7)

(aibj)w = w(a;b;), where w € {a;t1,bit1,Cit1,Tit1,bidiy1d;}, (8)

tiw = wt;, where t; = bj11di—1d;+1bi—1, w € {a;, bi, ¢i, xi, bi—1did;i—1}, 9)
(diz;ib))w = w(d;z;b;), where w € {aj+1,bit1, Cit1, Tit1, bidit1d;}. (10)

One of the relations in (4) is superfluous, namely, it can be obtained from (3) and the remaining
relations in (4). Hence the total number of relations in (1)-(10) is 84.

1.6. Algebraic classification of singular knots.

Theorem 1. Each singular knot can be represented by an element of the semigroup SK .

Theorem 2. Two singular knots are ambiently isotopic in R> if and only if the corresponding
elements of the semigroup SK are equal.
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Theorem 3. An arbitrary element of the semigroup SK corresponds to a singular knot if and
only if this element is central, i.e., it commutes with every element of SK .

As will be shown in Theorem 4 the whole semigroup SK describes a wider class of three-page
singular tangles. The subsemigroup in SK that is generated by 12 letters a;, b;, ¢;, d; (i € Z3)
and 48 relations in (1)-(10) containing no letters x; (i € Zg) coincides with Dynnikov’s semigroup
DS in [9,10]. The center of the semigroup DS classifies all nonoriented (regular) links in R? up to
ambient isotopy.

1.7. The content of the paper. In Sec. 2.1, we define three-page embeddings of singular
knots. These embeddings are constructed from plane diagrams of knots in Sec. 2.2 and are encoded
in Sec. 2.3. Theorem 1 is proved in Sec. 2.5. The ordinary singular tangles and three-page singular
tangles are introduced in Sec. 3.1 and Sec. 3.2, respectively. The latter notion generalizes three-page
embeddings of singular knots and helps us to prove Theorem 2. In Sec. 3.3, three-page tangles are
classified (Theorem 4), and Theorem 2 then follows from Theorem 4 as a particular case. Theorem 4
is applied to prove Theorem 3 in Sec. 3.4. In Sec. 3.5, classification Theorem 5 for knuckle 4-valent
graphs is stated. In Sec. 4 we deduce Lemma 3 which is used in the proof of Theorem 4.

1.8. Acknowledgments. The first author is thankful for hospitality to I. K. Babenko, J. La-
fontaine, and to the University Montpellier II (France), where this paper was written. He also
thanks I. A. Dynnikov for attention and the scientific advisor professor V. M. Buchstaber for
encouragement.

2. Three-Page Embeddings

2.1. Formal definition of three-page embeddings. An arc of a singular knot K C R? at
a point A € K is an arbitrary sufficiently small segment J C K with endpoint A. Thus, exactly 4
arcs issue from each singular point. Let Py, P;, and P» be three half-planes in R? with a common
oriented boundary, 0Py = 0P = 0P, = «. (All constructions in Secs. 2.1-2.2 are demonstrated in
Fig. 2.) We set Y = Py U P; U P» and call this union a book with three pages. An embedding of a
singular knot K in the book Y is called a three-page embedding if the following conditions hold:

1) all singular points of K lie on the axis «;

2) finiteness: the intersection K Nav = A; U---U A,, is a finite nonempty point set;

3) at every nonsingular point A; € K N a, two arcs lie in different half-planes;

4) a neighborhood of each singular point A; lies in the plane P;_1 U P;4q for some i € Zs;

5) monotonicity: for each i € Zs, the restriction of the orthogonal projection R?* — a ~ R to
each connected component of K N P; is a monotone function.

2.2. Construction of a three-page embedding from a plane diagram. Let D be a plane
diagram of a singular knot K, i.e., a planar 4-valent graph with two types of vertices: the first type
corresponds to singular points of K and the other corresponds to the usual crossings in a planar
representation of K. Given a singular point B, let us mark two small arcs with endpoint B, namely
a singular bridge Lp, that lie on different branches of the singular knot. Also, given a crossing of
the diagram D, we mark a small segment (a regular bridge) of the overcrossing arc.

/ N P, K

o L VI Ly / P

Ly

D
Fig. 2. Three-page embedding K C Y, wxg = agaib2bgxobadacico
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We then take a non-self-intersecting oriented path « in the plane of the diagram D with the
following properties:

(1) the endpoints of the path « lie far from D;

(2) the path « traverses each bridge only once;

(3) transversality: the path « intersects the diagram of D transversally outside the bridges;

(4) balance: for an arbitrary singular point B, consider two unmarked arcs L; and Lo with
endpoint B that do not contain the singular bridge Lp; then the second endpoint of one of these
arcs falls on the path « to the left of Lp and that of the other arc to the right of Lp.

Such a path a can be easily found as follows: consider only the bridges in the plane, i.e., finitely
many arcs, and draw an arbitrary path « satisfying (1) and (2) through the bridges. Then the
transversality property (3) will hold if the path « is made to be in general position with respect to
the diagram D. Suppose that, for the resulting path, the balance property (4) does not hold for a
singular point B, i.e., for example, both unmarked arcs L and Lo with endpoint B meet the path
« to the left of the bridge Lp. Then we slightly perturb the path « to the right of L by a move
similar to R2 in Fig. 1 in such a way that one of the two unmarked arcs L; or Lo (this is the arc
Ly in Fig. 2) meets the path « to the right of Lp.

We now deform the plane of D in such a way that o becomes a straight line and the following
monotonicity condition holds: the restriction of the orthogonal projection R? — o ~ R to each
connected component of D — « is a monotone function. We denote the upper half-plane above «
by Py and the lower half-plane by P». Finally, we attach a third half-plane P; to « (on the reader’s
side) and push out all the bridges into P, according to the following rules. Each regular bridge
becomes a trivial arc. Each singular bridge L becomes a “W”-like broken line such that the axis
« meets it at its 3 upper vertices among which the middle one is the singular point B. In fact, a
neighborhood of a singular point can be embedded in the plane Py U P, without pushing out the
marked arcs into the third half-plane P;. We have used the notion of a singular bridge to simplify
the arguments.

2.3. Encoding three-page embeddings. Each three-page embedding of a singular knot is
uniquely determined by its image in a small neighborhood of the axis « in the book Y. Indeed, to
reconstruct the whole embedding, it suffices to join the oppositely directed arcs in each half-plane
beginning with the interior arcs. We always assume that the half-plane Py lies above the axis «
and that the half-planes P, and P, are below «. Moreover, we suppose that P; is above Py, i.e.,
the arcs in P, are shown in dashed lines. Only the 15 patterns in Fig. 3 may occur in a three-page
embedding of a singular knot near the axis a.

/ /b // /:0 \ //\\

a co o
NN
AN /
/ / AN
b c dy 1

SN N
/ N

ba ) do z2

NN S
/
AN

Fig. 3. Geometric interpretation of letters in the alphabet A
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Let W be the set of all words in the alphabet A = {a;, b;, ¢;, d;, x;, i € Z3} including the empty
word @. For a given three-page embedding of the knot K, we consecutively write the letters of A
corresponding to the intersection points in K N «. We obtain some word wx € W (Fig. 2).

2.4. Balanced words. Note that one cannot obtain all the words in W using the encoding
in Sec. 2.3. A word is said to be balanced if it encodes some three-page embedding. The following
simple geometric criterion for a word to be balanced exists: in each half-plane F; all the arcs must be
joined to one another. Arcs in an unbalanced three-page embedding can recede to infinity without
meeting one another. One can easily restate this criterion algebraically in terms of the alphabet A.
For i € Z3, a word w is said to be 7-balanced if the substitution

ai,bi, i, di,xy = &, ai+1,bi—1,dit1 — (, bit1, Cik1,dic1 =), Tiz1 —)(

results in an expression with completely balanced brackets (or, in another terminology, with correctly
placed brackets). This means that, before each symbol, the number of left brackets is no less than
that of the right ones, and their total numbers are equal. We denote by W; the set of all i-balanced
words in the alphabet A. Then a word w is said to be balanced if it is i-balanced for each ¢ € Zs.
Thus, the set of all balanced words is Wi, = Wo N W1 NWy C W.

2.5. Proof of Theorem 1. We take a plane diagram D of a given singular knot K. Beginning
with the diagram D, we construct a three-page embedding K C Y described in Sec. 2.2. Encode
the resulting three-page embedding of K by a balanced word wx € W} according to the rules in
Sec. 2.3. Finally, consider the word wg as an element of the semigroup SK. O

3. Singular Tangles

3.1. Semigroup ST of singular tangles. To prove Theorem 2, we need the notion of a
singular tangle. The category of tangles (without singularities) was studied by Turaev [21]. Take
two horizontal half-lines Ry C R? given, for example, by the coordinates, (r,0,0) and (r,0,1),
where r € Ry . Mark the integer points (j,0,0) and (j,0,1) for all j € N on both the half-lines.
Let T" be an arbitrary disconnected nonoriented infinite graph I" with vertices of valency 1 and 4.
A singular tangle is an embedding of I' in the 3-dimensional layer {0 < z < 1} such that (Fig. 4).

(1) the set of the 1-valent vertices of the graph T' coincides with the set of marked points
{(]7 0, 0)7 (.]7 0, 1)}j€N,

(2) all connected components of the graph I' lying sufficiently far from the origin are the line
segments joining the points (k,0,0) and (j,0,1) such that the difference k — j is constant for all
large 7;

(3) there exists a plane neighborhood of each 4-valent vertex of the graph T.

We consider singular tangles up to ambient isotopy in the layer {0 < z < 1} fixed on its
boundary and such that condition (3) holds. Singular tangles can be represented by their plane
diagrams by analogy with singular knots (Fig. 4). One can construct a product of singular tangles
I'1 'y by attaching the top half-line of I'y to the bottom half-line of I';. Thus, the isotopy classes of
singular tangles form a semigroup ST'. The unit in ST is the singular tangle consisting of vertical
line segments. Let us introduce the singular tangles &, ng, og, ak_l, T (k € N) shown below.

IR XD X)X

Fig. 4. Generators of the singular tangles

The following lemma transfers results of [21] from the classical case to ours.

Lemma 1. The semigroup ST of singular tangles is generated by the elements &, Nk, ok, ak_l,
Tk, k € N (Fig. 4) and the following relations, where k,l € N:
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§e&t = G+28ks Sk = 28k, kot = 01428k, &kt = Ti428k (1 >Fk) (11)
k&l = E1—2Mks MK = M—2Mk, MKOL = O1—2Mk, MkTL = Ti—2Mk (1 = (12)
or§l = §0k, Ok = MOk, Ok0y = 00k, OkT, = T|0F (I=k (13)
& = &Th, TR = MTh,  TROL = 01Tk, TR =TTk (1= k+2), (14)
k418 = 1 = nk&rt1, (15)

Mot20k41&k = 0% " = MeOh418k42, (16)

Met2Th+18k = Tk = Mk Th+15k+25 (17)

MOk = My OkSk = ks (18)

oro; !t =1=0; "oy, (19)

OkOk+10k = Ok+10k0k+1; (20)

OkOk41Tk = TE4+10k0k+1, (21)

TkOk+10k = Ok+10kTk+1, ( )

OkTk = TEOk- (23)

Proof. Recall that we work in the PL-category. This means that a given singular tangle in
the layer {0 < z < 1} consists of finite broken lines. The local maxima and minima of the height
function on the components of a singular tangle are called extremal points. By peculiarity of a
diagram of a tangle we mean either a 4-valent vertex or a crossing or an extremal point. We say
that a singular tangle is in general position if its plane diagram satisfies the following conditions:

(1) the set of all peculiarities is finite;

(2) the crossings do not coincide with extremal points;

(3) for each 4-valent vertex, two arcs go up and the other two go down;

(4) each horizontal line (parallel to the Oz-axis) contains at most one peculiarity.

Obviously, every tangle can be moved to general position by a slight deformation. Then the
tangle diagram is split by horizontal lines into strips each of which contains only one peculiar-
ity. Considering the peculiarities in succession from top to bottom one by one, we write out the
corresponding generators in Fig. 4 from left to right. Namely, the generators & and 7 represent
extremal points, the generators o; and ng correspond to crossings, and 73 represents a 4-valent
vertex. It remains to show that every ambient isotopy of singular tangles decomposes into “ele-
mentary isotopies” corresponding to relations (11)—(23). It follows from the Reidemeister theorem
[15] and from considerations relating to the general position that an arbitrary isotopy of singular
tangles in general position can be realized using the following moves:

(1) an isotopy in the class of diagrams in general position;

(2) an isotopy interchanging the vertical positions of two peculiarities;

(3) creation or annihilation of a pair of neighboring extremal points;

(4) an isotopy of a crossing or of a 4-valent vertex near an extremal point;

(5) the Reidemeister moves R1-R5 (Fig. 1).

A type (1) isotopy preserves the constructed word in the letters &x,n, ok, ak_l, %, k € N.
The type (2) isotopies are described by relations (11)—(14). The type (3) isotopies correspond to
relations (15). In [21, proof of Lemma 3.4] it was shown that, in the smooth category, all isotopies
of a crossing near an extremal point are purely geometrically decomposed into relations of the
form (16). Similarly, in the PL-case under consideration, we can show that relations (17) are
sufficient for the realization of the isotopies of a 4-valent vertex near an extremal point. Finally,
Reidemeister moves R1-R5 correspond to relations (18)—(23), respectively. O

3.2. Three-page singular tangles. The notion of a three-page singular tangle will be used
to prove Theorems 2 and 3. Consider three half-lines in the horizontal plane {z = 0} that have a
common endpoint. For example, let

T={2>20,y=2=0tU{y>0,2=2=0}U{z <0,y=2=0}C {z=0}.
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We mark the integer points on the half-lines, {(7,0,0), (0,%,0),(—,0,0) | j,k,l € N}. Let I be the
line segment joining the points (0,0,0) and (0,0,1). We set

Pp={x>20,y=2=0}xI, Po={y>20,z=2=0} x1,
P={x<0,y=2=0} xI.

Here P; (where i € Z3) is not formally half-plane, but a strip I x R, which we will call a page. The
book Y in Sec. 2.1 is the interior of the set T" x I, i.e., in Sec. 2 we considered the embeddings
K C T x I such that the knot K does not intersect the boundary half-lines. Let I be an arbitrary
disconnected nonoriented infinite graph with vertices of valency 1, 2, and 4. A three-page singular
tangle is an embedding of I" in T" x I such that (Fig. 5)

(1) the set of 1-valent vertices of the graph I' coincides with the set of the marked points
{(]7 07 0)7 (Ja 07 1)a (07 ka 0)7 (07 ka 1)7 (_lv 07 0)7 (_la Oa 1) | j7 kvl € N}a

all 4-valent vertices of I" lie in the segment I;
finiteness: the intersection I'N I = A; U---U A,, is a finite point set;
the two arcs at each 2-valent vertex A; € I' NI lie in different half-planes;
a neighborhood of each 4-valent vertex of I' lies in exactly two pages among Py, P;, and Ps;
(6) monotonicity: for every i € Zs, the restriction of the orthogonal projection T'xI — I ~ [0, 1]
to each connected component of I' N P; is a monotone function;

(7) for each i € Zs, all connected components of the graph IT' lying in the plane P; sufficiently
far from the origin are parallel line segments.

7R g

a (&) e(m)

(
(
(
(

— — — —

2
3
4
5
6

¢ p(o)

Fig. 5. Three-page singular tangles

As in the case of singular tangles in Sec. 3.1, isotopy classes of three-page tangles in the layer
{0 < z < 1} form a semigroup. Each three-page tangle can be encoded by a word in the alphabet
A = {a;,bi,¢,di, i, 0 € Zg} (Fig. 3) in exactly the same way as in Sec. 2.3. We now define a
subsemigroup of three-page tangles that is isomorphic to the semigroup ST introduced in Sec. 3.1.
A three-page tangle is said to be almost balanced if the corresponding word in the alphabet A is
1-balanced and 2-balanced (see Sec. 2.4). Note that, for any i-balanced three-page tangle, all line
segments joining the marked points in the page P; can be assumed to be vertical. We denote by
BT the semigroup of almost balanced three-page tangles. We define a map ¢ : ST — BT on the
generators as follows (Fig. 5):

0(Ek) = dseobs ™, (k) = d5 tasbh, (o) = 5 'bidad, b,
(o) = dibibadibs ™, o(1y) = d5wabh, k e N.

Each tangle goes to the corresponding three-page embedding plus vertical line segments. The fol-
lowing Lemma is proved in the same way as [11, Lemma 3].

(24)

Lemma 2. The map ¢: ST — BT is a well-defined isomorphism of semigroups.

Proof. First, let us show that isotopy equivalent singular tangles go into isotopy equivalent
three-page singular tangles under the map . Actually, by definition, singular tangles in the semi-
groups ST and BT are considered up to isotopy in the layer {0 < z < 1}. It follows that the map
@ is injective. We now construct the inverse map 1 : BT — ST'. Let us associate with each almost
balanced three-page tangle I' € BT a singular tangle ¥ (I") € ST given by the following diagram.
According to the property of being almost balanced, we assume that all line segments of I" lying
in the pages P, and P, are vertical. Deleting all these vertical line segments from I', we obtain a
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singular tangle ¥ (I') in the sense of Sec. 3.1. Clearly, the composition 1 o ¢: ST — ST is identical
on the generators (Fig. 5). Therefore the maps ¢ and 1) are mutually inverse. O

3.3. Classification of three-page singular tangles. We denote by ¢(11)—¢(23) the relations
between words in the alphabet A which are obtained from relations (11)—(23) of the semigroup ST
under the isomorphism ¢: ST — BT (Lemma 2). The following lemma will be proved in Sec. 4.3.

Lemma 3. Relations ¢(11)-p(23) follow from relations (1)—(10) of the semigroup SK.

Theorem 2 is a special case of the following classification theorem for three-page singular tangles,
which we prove by analogy with Theorem 1 of [11].

Theorem 4. The semigroup of the isotopy classes of three-page singular tangles is isomorphic
to the semigroup SK.

Proof. As was already mentioned in Sec. 3.2, with each three-page singular tangle, a word in
the alphabet A and hence an element of the semigroup SK can be associated. Conversely, each
element of the semigroup SK can be completed to form a three-page tangle by adding three families
of parallel line segments on each page P;, i € Zg. For example, the three-page tangles represented in
Fig. 3 correspond to the following elements in SK: daca, asba, bidadyba, daxabs. Relations (1)—(10)
of the semigroup SK can be easily realized by ambient isotopies in the layer {0 < z < 1}.

Therefore it remains to prove that each isotopy of three-page singular tangle can be decomposed
into “elementary isotopies” corresponding to relations (1)-(10) of SK. It suffices to do this for
almost balanced three-page tangles. Indeed, for a given three-page tangle corresponding to a word
w € W, let n; and m; (n2 and mg) be the maximal indices of points on the half-lines Py N{z = 0}
and Py N{z=1} (PoN{z=0} and P,N{z = 1}) that are joined by arcs with points on the line
segment I. For example, for the tangle w = ag, these are ny = ny = 0 and m; = mo = 1. For
all almost balanced tangles (for example, see Fig. 5), we have n; = m; = ny = mg = 0. Then the
word by?dy wby'd{*? is almost balanced. Because of the invertibility of the generators b; and d;,
such a transformation and its inverse send equivalent words to equivalent ones.

By Lemma 2, we can associate a singular tangle in the sense of Sec. 3.1 with each almost
balanced word. For such tangles, each isotopy is already decomposed into the elementary isotopies
corresponding to relations ¢(11)—¢(23) (see Lemmas 1 and 2). Thus, Lemma 3 completes the proof
of Theorem 4. O

3.4. Proof of Theorem 3. We will identify an arbitrary three-page singular tangle with the
corresponding element of the semigroup SK. A three-page tangle is said to be knot-like if it contains
a singular knot near the axis «, and the rest of it consists only of vertical segments. Clearly, the
knot-like tangles correspond to the balanced words in W;, C W.

Lemma 4. An element w € SK defines a knot-like tangle if and only if w is a central element
in the semigroup SK .

Proof. The “only if” part is geometrically evident, namely, a singular knot can be moved by an
isotopy to any place in a given tangle, i.e., by Theorem 4, a knot-like element commutes with any
other element. Let w be a central element in SK. Then, for each k € N, we have bfdffw = wadf.
Denote by m (n) the number of arcs of the three-page tangle w that recede, in the page P;_1,
to the left (to the right) boundary. Then, for a sufficiently large k, the number of the arcs of the

three-page tangle bkdfw that recede, in the page P;,_1, to the left boundary is equal to k, and for

7
the tangle wbfd”, it is equal to m + k — n, i.e., m = n. Hence, for a sufficiently large ! and an

1)
arbitrary j =¢—1 € Zs, the word aloallwcllcg is j-balanced, i.e., it is balanced. Since w is a central

element, the word waf)allcllcf) is also balanced. Consequently, it is geometrically obvious that the

element w determines a knot-like tangle. O
Theorem 3 follows from Lemma 4.

3.5. Classification of knuckle 4-valent graphs. The isotopy classification problem of such
graphs was considered in [16]. Dynnikov’s method makes it possible to solve the problem by analogy
with the case of singular knots. Let us introduce a semigroup F'G having the same generators and
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relations as the semigroup SK with the only distinction that relation (6) is replaced by
l’i(di-;-ldidi_l) = T;. (6/)
Then the semigroup F'G has 15 generators and 84 defining relations.

Theorem 5. The center of the semigroup FG classifies all nonoriented knuckle 4-valent graphs
in R3 up to ambient isotopy.
Theorem 5 is proved analogously to Theorems 1-3 with replacement of relation (6) by (6’) and
relation (23) in Lemma 1 by
OkTE = Tk- (23")

4. Proof of Lemma 3

Bellow in Proposition 1 we derive new word equivalencies from relations (1)—(10) of the semi-
group SK. In Sec. 4.2, using Propositions 1-3, we prove Lemma 5 on the decomposition of an
arbitrary i-balanced word. Lemma 5 and Proposition 6 reduce the infinite set of relations ¢(11)—
©(23) to finitely many relations (1)—(10). The proof of Lemma 3 is completed in Sec. 4.3 using
Propositions 5 and 6. All relations will be obtained in a formal way, but they have a geometric
interpretation (Fig. 3).

4.1. Corollaries of relations (1)—(10).

Proposition 1. Equivalencies (1)—(10) imply the following word equivalences (it is everywhere
assumed that 1 € Zg and w; € B; = {ai, b;, ci, d;, bi_1b;d;_1, bi_ldidi_l})i

bi ~ dip1di—1,  or biy1 ~di—idi, b1 ~ didiq,
or bg~dida, by ~dady, bo~ dody,

di ~ bi—1bit1, or di—1 ~bip1bi,  dig1 ~ bibi1,
or do~ beby, dy ~ boba, do~ bybo,

diy1bi—1 ~ bi1dipati,  bipidi—y ~ tidi_1biy1, where t; = bip1di—1dip1bi—1,

—~
[\)
(@)

~

—~
[N}
D

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~~~ o~~~ o~
w [\
D ~J
R N N S N N N N N N i D S

[\
oo

a; ~ a;—1biy1, ¢ ~diyiciq,

[\V)
Ne)

a;b; ~ a;_1d;—1, dijc; ~bi_1ci-1,

w
(=)

bi ~ a;bic;, d;i ~ a;dic;,

w
—

bi—1xip1di—1 ~ x4,

w
\)

bixid; ~ dit17i11bi11,

w
w

(dici)wiy1 ~ wiy1(dicy),
(bici)wi—1 ~ wi—1(bic;),
(aibi)wiy1 ~ wit1(aib;),
( (aid;),

/ / /
tiw; ~ wit;, tyw; ~wit;, where t; = bip1di—1diy1bi—1, t; = di—1biy1bi—1d;it1,

W W
(LN

b i
aid;)wi—1 ~ wi—1(a;d;

LW W
(O

(dizibi)wiy1 ~ wiy(diziby),
(bixidi)wi—1 ~ wi—1(bjx;d;),
dit1bi—1widi—1bit1 ~ bi—1dip1wibip1di—1,
b2 jaids_y ~ (bi—1a;di—1)d? (bi—1bidi—1)bi,
b2 qcidi g ~ di(bi_1did;1)b2(bi_1cidi_1),
b2 bid? | ~ (bi_1bidi1)d? (bi_1bidi_1)bs,
b2 did? | ~ di(bi_1did;_1)b? (bi_1did; 1),
bi_q@idy_y ~ (071 bidi_q) (bi-adidi—1)d} w33 (bi1bidi—1) (071 i}y ).

L 2N
T W N = O ©
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Proof. Note that equivalencies (25)(27) readily follow from (3)-(4). By (4), we have d; ~ b; ',
bi—1bidi—1 ~ (bi—1didi—1)~! and t, ~ ti_l. Therefore (35), (37), and (38) immediately follow from
(8), (9), and (10), respectively. The other equivalencies will be consecutively established using those
already proved. Recall that ¢ € Z3z = {0,1,2}, i.e., we have (i+1)+1=4i—1and (i—1)—1=1i+1
in Zg.

1 4 1 4
(28): aiibist ¥ (aidig)bisr  as, diprcioy © dis(biien) e,
(29): aibi(?\%) (aiflbiJrl)bi(?\Ej)aifldifla dic; (?g)(bquiﬂ)ci W bi—1ci-1,
(30): asbic; (%)az(dz’HCiH) B a;—1Ci+1 ) bi, aid;c; 2 ai(biflcifl)(%)awrlcifl B di,
(31):
(32):

32

2 4
bi—12ip1di—1 ® bi—1(di—1zibi—1)di—1 W i,
(31)

bisd; o (25),(26)

bi(bi—1xip1di—1)di ~  dip12ip1big.

Below, in the proof of (33), we first commute b;11 and d;c; and then we use this relation to
commute a;y+1 and d;c;.

30 7 2
(33b): bi+1(dicz’)("') (@it1bit1civ1)(dic;) @ ai+1bi11(dici)civa 20 @i+10i11(bi—1bit1)cicivt

1 8 30 1
W (@it1bit1)bi—1cic1cig © bi—1¢i—1(@it1bit1)cCit1 0 bi—1ci—1bi1 W bi—1(biy16i)bit1
(26)

~ (dici)bit1,
(33a): aiy1(dic;) W (ai—ldi)(dici)(2"6“)ai—1(bi—1bi+1)(dici)(%ib) ai-1bi—1(dici)bi+1
D (i) @imrbim)bins ® (dici) (aimads) ¥ (dic)ain.
The other equivalences in (33) follow from (33a), (33b) and (7). Equivalences (34), (36),(39)

follow from (29) and (33), (29) and (35), and (32) and (38), respectively. The remaining calculations
are trivial,

(40): diJrlbiflwidiflbiJrl(2’\‘7)(bi71di+1ti)widiflbi+1(?’)\’7)bi71di+l(witi)diflbiJrl(%)bifldi+lwibi+ldifl7
@1): 82 qaid? D02 a(dibi)d® b,y (aids) (bim1bi) 2, P by aidi(bi—1bi)di—1 (bisrbi)
D bi—1aibi11(dib;—1b;id;—1)b; @ (bi—1a;di—1)d? (bi—1bid;—1)b;,
(42): b2 (bid? | W bz‘fl(bz’di)bz’flbidil(%) biflbi(dibiflbidifl)(bi+1bz‘)(:’i\’?)biflbibwrl(dibiflbidifl)bi
(%)(biflbidifl)d?(biflbidifl)bi7

(43) : b?flcidgfl @ b?,l(dibi)cid?,l (3'\11) bgfldidi—l(bici)di—l (23) (didz’—H)(bi—ldidi—lbi)cidi—l

0 di(bi—1didi—1b;)diy1¢idi—1 20 di(bi—1d;d;—1)b? (bi—1cidi—1),
(44): b2 d;d?_, W b?_ldz‘dz‘—l(bidz‘)dz‘—l(23)(dz‘di+1)bi—ldidi—lbididi—1(3~7)di(bz‘—ldz‘di—lbi)di+1didi—1
(2"6“)dz'(bi—ldidz’—l)b%(bi—ldz’di—l)7
(45): bzz—lxidzz—l W bzz—l(bidi)xi(bib12+1d12+1di)dz2—1(}B)b?—lbib?—l—l(di‘ribi)d12+1did12—1
RPOb2 by(di_ydi)2diaiby(bibs—1)2did?-,
4)

~ (071 bid? ) (bio1didi1)d7 @b (bi-1bidi—1) (b7 did? ;).

4.2. Decomposition of i-balanced words.

Proposition 2. For each i € Z3, every i-balanced word is equivalent to an i-balanced word
containing only the letters a;, b;, ¢;, d;, x;, bi—1, and d;—1 .

Proof. Using the substitutions below, we can eliminate the other letters,

(1) (28) (1) (28)
aj—1 ~ aidiy1, Qip1 ~ aibi—1, ci—1 ~ bipi1c,  ciy1 ~ di—1c,

(25) (26)

2 2
biv1 ~di—1d;,  dig1 ~'bibi—1, w1 ? diwiz1bi, Tt ® di—12;bi—1. O
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In what follows, fix an index i € Zs. Let w be an i-balanced word on the letters a;, b;, ¢;,
di, x;, bi_1, and d;_1. We consider the substitution p: a;,b;,c;,di,x; — o, bi_1 — (, di—1 —).
Denote by p(w) the resulting encoding consisting of brackets and bullets. Since the given word w is
i-balanced, the encoding p(w) (without bullets) is a balanced bracket expression. For each place k,
denote by dif(k) the difference between the number of the left and right brackets in a subword of
p(w) ending at this place. The maximum of dif(k) over all k& will be called the depth of w, d(w).
For example, the word w = b? ;a;d? ; has the encoding u(w) = ((e)) and the depth d(w) = 2.

By the star of depth k, we mean an encoding of the type (*e)* which has k pairs of brackets.
The bullet is a star of depth 0. If, for a word w, its encoding p(w) decomposes into several stars,
then w is said to be star decomposable. In this case, the depth d(w) is maximal among the depths
of all stars participating in the decomposition.

Proposition 3. Every i-balanced word w is equivalent to a star decomposable word w' of the
same depth.

Proof. Consider the beginning of the encoding u(w). After several initial left brackets, u(w)
contains either a right bracket or a bullet. In the first case, we delete a pair of brackets () by the

4
rule b; _1d;_1 @ @. Hence, we can assume that the next symbol after the sequence of k left brackets
is a bullet. Since u(w) is balanced, after this bullet there can be a sequence of j, 0 < j < k, right
ik (4
brackets. If j < k, then we insert the subword dfﬁf bfﬁf (N) @ in w after the last right bracket.
This operation does not change the depth d(w). Therefore, for the resulting word wy, the encoding
p(wy) contains a star of depth k at the beginning. Continuing this process, after a finite number

of steps, we get a star decomposable word wy of the same depth d(wy) = d(w). O
For an arbitrary letter s, we denote by s’ the word b;_1sd;_1, for example, a] = b;_1a;d;_1.
Proposition 4. Fach star decomposable word w s equivalent to a word decomposed into the

following i-balanced subwords: a;, b;, ¢;, d;i, x;, a;, b, c;, d, x}.

Proof. We use induction on the depth d(w). The case d(w) = 1 is trivial. Let u(w) contain a
star of depth k > 2. Let us apply one of the following transformations to every such star:

w= b yaidly N ald2b = v, e p(u) = (o)) = p(v) = (o) @ o(s)e,
w= b ybid? DBy = v, L. p(u) = (o)) — p(v) = (o) 0 o(s)e,
w=byed D ddbid = v, ie. p(u) = (o)) = p(v) = o(s) e o(s),
w= by did? R ddBd = v, e p(u) = (o)) — p(v) = o(s) e o(s),
w= b gaid? O Gy bid? ) (i didi) B (bioabidi1) (0 did? )

R (a0l dl b3, (didbdL) = v,

[t R A 171

e, 1) = ((#)) = (1) = (o) o a(o) # (s) 0w we (o) 0 (o) 0 o(s).

We get a word w; ~ w, which, according to Proposition 3, is equivalent to a star decomposed word
wy of depth d(ws) = d(w) — 1. The induction step is complete. O

Lemma 5. For all ¢ € Z3, each i-balanced word is equivalent to a word which can be decomposed
into the i-balanced words belonging to the set B; = {a;, b, ¢;, d;i, xi, bi—1b;d;—1,b;—1d;id;—1}.
Proof. By Propositions 3 and 4, it remains to eliminate only the following words:
a; = biflaidifl(%)(didﬂrl)aidifl W didi+1ai(bidi)difl(ﬁ))di(aibi)dwrldidifl(g\’6

¢ =bi_1cidi—q 20 bi—1¢i(bi+1b;) i bi—1(bidic;)biy1b; 5 bi—1bibit1(dic;)b; 2 (bi—1bid;—1)d?c;b;,

)diaib? (bi—1didi—1),

24



z; = bi_1wid;i— W bi—1(bibit1dip1d;)i(bid;)di—q 2 bi—1bibit1(dizibi)dip1didi—q

) (bi—1bidi—1)dizibid;y1did;— 20 (bi—1bidi—1)dia;b? (bi—1didi—1). O

Denote by (33)-(40") relations (33)—(40) assuming that w; € W;.

Proposition 5. Generalized equivalences (33')-(40") hold for arbitrary i-balanced words
w; € W;.

Proof. By Lemma 5, every i-balanced word in W; can be decomposed into the elementary
words belonging to B;. Since equivalences (33)—(40) hold for the words in B;, they also hold for the
words in W;. Note that we get an infinitely many new equivalences (33")—(40"). O

4.3. Deduction of relations ¢(11)—¢(23) from relations (1)—(10) of the semigroup
SK. For each [ > 1, denote by wu; a symbol in the set of generators {&,m,al,al_l,n} of the
semigroup ST of singular tangles. We define the shift maps 0,: ST — ST and pg: BT — BT
using the formulas 0y (u;) = ugy; and pgp(w) = d5wbs. Evidently, the shift map 6y: ST — ST is
a well-defined homomorphism. Indeed, each relation in (11)-(23) for k£ > 1 is obtained from the
corresponding relation for k& = 1 by the shift map 6;_;. For example, relation &,& = &2k is
obtained from &1& k11 = §_k+3&1 by the shift map 0. By (4) the shift map py sends equivalent
words to equivalent ones, i.e., p is also a homomorphism. Moreover, the following diagram

sT %, o7

‘Pl lw
BT - BT
is commutative, which implies the following proposition.

Proposition 6. For each k € N, relations ¢(11)-¢(23) can be obtained from relations ¢(11)-
©(23) for k =1 using the equivalences bady ~ 1 ~ daba of (4). O

Proof of Lemma 3. Here we deduce relations ¢(11)-¢(23) of the semigroup BT in the
alphabet A from relations (1)-(10) and (25)—(40). We use generalized equivalences (33")-(40") in
Proposition 5. We denote by the star x the following images under the map ¢ for k£ = 1:

©(&1) = daca, @(m) = agba, (01) = bidadyby,
p(orh) = dabibady,  @(11) = dazabs.

Then, by (24), we have @(u;) = dy ' % bh~ . Note that the words d x by € W are 1-balanced and
2-balanced (Fig. 5). Therefore relations ¢(11)—p(14) can be proved following the same scheme,
(11): pleru) = (daea)(ds™ x 6571 © dB(baca) (@5 % 057 ) B ) (baea) D plusata),
(12): p(mu) 2 (azbo)(dy "+ b5 <a2d2><dl 3t 03 ) (7« b3 (azde)3 W p(wiam),
(13): p(oru) 2 (bydadiby) (@ + 851 ' (bydady ) (d 2+ b1) P (2)d2(b2d0d2b0)(dl 3 5 03)02
0 433 5 BL3) (badodab )02 V80 (a1 % B52) (boby ) dadib 2 (g,
(14): (i) 2 (dpwab) (451 5 05 1) Y @2 (borada) (a3 % 053)02 B0 d2(d3 5 b3) (borads) by
O (@5 5 B (darabn) 2 ().
The remaining calculations are straightforward,
(15): (77251) (d2a252)(d262) W d2(a25202)(§8)d252 AR d2b2(N)(a2d202)b2 ) o(mé2),
(16): o(n30261) “ XM BZagba (babr )dady (baes) X d3(ashs)dodads (bacz) ) d2do(ashs)dad: (baca)
(N)dz(d2d0)(a252)d2(5202)d1 9 da(d2do)(azbac2)dy (N)d2b1(a2b202)d1 (N)d2blb2d1 (—)<P( !
p(moats) ¥ agbydy(dydy)cab % agbyda(boca)by ~ S (aod1)bidac by W aoda (bidy)c1bs

(N)aod25152(d101)52(~)(d251bzd1)(a061)52 W d2ab1bad1daby W dab1bady = o(orh),

(24')
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(17):

(18):

(19):

(20):

(22):

(23):

10.

26

4 4 5
gD(T]gTQfl) ) ( ) d%agngQbQCQ (N) dQ(nggbg) (N) (p(Tl) (N) (dg%gdg)b% (N) CLQdQl'QdQCQb%

W ©(mmés),

(24 4 29 24
p(o1&1 ) )(bld2d152)(d262) W b1d2(d102)(N)b1(d2Co)(N)b101 (N)a2b2(—)90(£1)

(

26 1
(7710 ) N ag(bgbl)dgdlbg(w) (agdo)dgdlbg (N) (aldg)dlbg (N) (aodl)bg (N) (p(??k),
(

)

(24) 4) . (4

4
010 ) (bldgdlbg)(dgblbgdl) (N) (bldel)(bledl) ~ 1~ (dgblbgdl)(bldgdle)

SRS

24)
= 80(01 1‘71)

o(020109) 2 dobydadi 0301 2102 X dy (by dady b2 dod3d1 03 0 dodo (bydady by) d2d, b2
2D 524y (dy do) 52 Z 02 (dy do ) (dodh Yoo B B2 dabody (dody )bz Y 62 (dabod dobe)dady b
012 (bodady bado)dadibs "R 62 (d1 da)dady ba (boby )dadiby 2 by d2dy ba(boby )dad: by
Y o(o10501),
. o(ro109) ¥ dBaab2bid2dib3 ) do(daabs)dod2dr b2 ) dodo(doabe)d3d, 2
O (dado) (dowads)dib3 2 by (dowads)drb2 2 b1 d2(baads)di 02 2 02d2d, (baads )2
Y o(o105m).
o(T10201) W dox2(b1dadib2)(bab1)dady by (%E)d2$2(b1d2d1b2)d0d2d1b2
B2 4y (dobo)wado (bydad?)bs ) dadyry (b1dad2)by 2 dadoby (dyaribr)dad2bs

5
@ )dgdobldg(dlwlbl)deg( )f\s )dgdobldgdl(boxgdo)dlbg( )( )dgdo(bldelbg)d2b0$2b2
(37)

25),
~ dg(bldelbg)donb()be%( 2\-/( )dgbldelbg(bgbl)dQ(dldz)be% (N) (p(0'2(717'2),

25 6 26 24
90(017'1) (N) bldgdll‘gbg(N)(dgdo)dgdll‘QbQ (N) dQ."L‘Q(dodgdl)bQ(N)dgl‘g(bgbl)delbz (:)4,0(7'10'1).

(26) )
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