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All 2-dimensional links in 4-space live inside
a universal 3-dimensional polyhedron

C KEARTON
V KURLIN

The hexabasic book is the cone of the 1-dimensional sket#ttre union of two
tetrahedra glued along a common face. The universal 3-diioeal polyhedron
UP is the product of a segment and the hexabasic book. We $tabarty closed
2-dimensional surface in 4-space is isotopic to a surfatéin The proofis based
on a representation of surfaces in 4-space by marked grépks,with double
intersections in 3-space. We construct a finitely presesgadgroup whose central
elements uniquely encode all isotopy classes of 2-dimeab&urfaces.

57Q45; 57Q35, 57Q37

1 Introduction

1.1 Brief summary

This is a research on the interface between geometric tgposongularity theory and
semigroups. A 2-link is a closed 2-dimensional surface dirdensional spack*. We
study 2-links up to isotopy that is a smooth deformation efdmbient 4-dimensional
space. We prove that any 2-link is isotopic to a surface euxdanto the universal
3-dimensional polyhedron UP. We also reduce the isotopssifleation of 2-links in
4-space to a word problem in a finitely presented semigroup.

1.2 The universal polyhedron containing 2-dimensional liks
First we define the universal 3-dimensional polyhedron UP.

Definition 1.1 Thethetagraph TG consists of 3 edges connecting 2 vertices. The
circled theta graph CT is T& S', where the circleS' meets each edge of TG in
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one point, see Fidl. Then CT is the 1-dimensional skeleton of two tetrahedradjlu
along a common face. Theexabasic bookiB is the cone of CT. Being embedded in
3-space, the book HB divides a neighbourhood of the cenérééx into 6 parts. The

universal3-dimensional polyhedron is UR HB x [—1, 1].

TG CT

Figure 1: The theta graph TG, circled theta graph CT, book HB

We will work in the smooth category, i.e. all diffeomorphisrareC>-smooth. We
will make necessary comments on similar constructionserPth case.

Definition 1.2 An embeddings a diffeomorphism onto its image. 2-link is a
closed (possibly disconnected or non-orientable) smootface S embedded into
R*. An isotopy between 2-linksS and S is a smooth family of diffeomorphisms
FU: R* — R*, u < [0,1], such that® = idps, F}(S = S.

Fix the 4th coordinate in 4-spaceR3 x R. Then a 2-link inR® x R can be studied

in terms of itscross-sectionsS= SN (R® x {t}), see Fox and Milnorq]. Any 2-link
can be isotopically deformed to a surfaBe- R® x [—1, 1] such that the projection
pr: S— [—1,1] has distinct non-degenerate critical values. A genaxaszsection

S is aclassical link irR® x {t}, while a cross-section containing a saddle is a link with
a double point. When passes through a saddle, the cross-se@&iea SN (R3 x {t})
changes by the Morse maodification in the left picture of Rig.

R DX

Figure 2: Resolving a singular point and a bandh

A PL analogue of the smooth approach is to decompose a BIDKR3 x [—1, 1] into
handles located in different sectioR$ x {t;}. The 1-handles o8 will be represented
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2-links live in a universal 3-polyhedron 1003

by bands that have a distinguished core and are attacheddssical link in 3-space.
Any attached band can be retracted to a singular point méweadbridge encoding
the core of the band. The cross-sectionssdifelow and above every 1-handle locally
look like the right picture of Fig2.

1.3 Main results

The hexabasic book HB is closely related to By¥page bookTB, the cone of the
thetagraph TG consisting of 3 edges connecting 2 vertices, se€/Fifjhe binding

segment of TB is the cone of the 2 vertices of TG. From anotbert f view, the
3-page book TB can be consideredids< T, whereT is thetriod consisting of 3
edges connecting the central ver®xto other 3 vertices, here the binding axisis

R x O. The hexabasic book HB is obtained from TB by adding 3 haksliwhose 6
boundary radii are attached to the 3 edge$@®@f x T, see Figl.

Theorem 1.3 Any 2-dimensional linkS C R* is isotopic to a surface embedded into
the universal 3-dimensional polyhedraiP = HB x [—1,1].

The key idea of Theorerh.3is to put a given surfac8 in general position and consider
its cross-section§ through saddles of prS — [—1, 1], see ClainR.3. Such a cross-
sectionS is a link with exactly one singular point, s§ can be embedded into the
3-page book TB using the technique of 3-page embeddingsapeceby Kurlin and
Vershinin [L2, 13], see Propositio.2. Both resolutions of the singular point &f can
be realised in TB, i.e. the embedding extends to a regulghbeurhood ofS in S.

It remains to embed the complement of the regular neighloma of all saddles into
HB x [—1, 1] realising any isotopy of classical links in HB, see LemBx&

We will develop a 1-dimensional calculus for 2-links as dals. Any 2-link S in
general position iR3 x [—1, 1] can be represented by a banded IBlkwhose bands
are associated to the saddles of @~ [—1, 1], see Propositior2.6(i). Retracting
each band to a point, we get a marked graph whose singulatsperi@ marked by
bridges encoding the cores of bands. There is a completef seb\es on marked
graphs generating any isotopy of 2-links in 4-space, sepd3itton4.1 Any marked
graph can be embedded into the 3-page book TB and can be enapdevord in the
alphabet of 15 letters. The moves on marked graphs are dtadsito relations on
words, which leads to the universal semigroup SL of 2-limkg-space.

Introduce the universal semigroup SL generated by thedadfeb;, ¢;, d;, X, subject to
relations (-1)-(1-8), wherei € Z3z = {0,1,2}, e.g. 0— 1= 2 (mod 3).
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(1-1) dodido =1, Dbidi =1=db
(1-2) g = gy10i_1, b =a_1C11, G =Db_1CG11, di=a;11G1
(1-3)

uv=vu,u € {ab;,dic;, bi_1didi_1bi, dixibi },v € {ai;+1,bi+1,Cir1, bidiiadi, Xip1}
(1-4) Xi—1 = bipixdizy, bixb = a(bixb)c, dixdi = a(dixd)c

(1-5) (dixib)d?a? d? 4 = dPd?, 107 1 (cixiby)
(1-6) ax =a, abxdcg=1
(1-7) dixibicix; = bixdicix;

(1-8)

Widh 102018 1bi 1xbidh 1 107bi 4 102 = wibi_1biaibi 18 1d7ci_1bixbi, wherew; = aibixbic

One of the 6 relationdd, = 1 = dib; is superfluous and can be deduced from the
remaining relations in1-1). Moreover, the commutativity oflic; with a1, b1
follows from the other relations inl¢3), see more details in Kurlinlp]. So the
semigroup SL is generated by not more than 15 letters and&tores.

Theorem 1.4 Any 2-link S c R* is encoded by an elemenk € SL in such a way
that 2-links S, S are isotopic if and only if their encoding elemenits andwg are
equal inSL. An elementw € SL encodes a 2-link if and only if is central inSL.

Outline. In section2 one represents 2-links in 4-space by banded links and marked
graphs in 3-space. Theorerh3andl.4 are proved in section® and4, respectively.
Banded links are more convenient for deriving a completefetoves generating any
isotopy of 2-links. Marked graphs will be used to prove ouimmasults on embedding
and encoding 2-links up to isotopy.

1.4 Acknowledgements

The authors thank S Carter, F Tari and the anonymous refereséful suggestions.

2 Representing 2-links by banded links and marked graphs

2.1 Critical level embeddings of 2-links in 4-space

Here we describe the PL approach where a 2-link is isotdgic&formed to a nice
embedding with handles at different levels. The smoothieesf crucial Claim2.3(ii)
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2-links live in a universal 3-polyhedron 1005

is a standard statement on general position proved in segtio

Definition 2.1 A handle of dimensionn and indexk is Dk x D" X. A handle
decompositiorof a manifold M" is a sequence of submanifoldidg C My C --- C

M, = M, whereMgp is a disjoint union oin-dimensional disks, eadM; 1 is obtained
from M; by adding a handle of some indé&x One can writeM; 1 = M; U, (DX x

D" K), wherey; : D% x D% — 9M; is an embedding. If before and after each
handle addition one insertscallar, the product of the attaching area and a segment,
then one gets eollared handledecomposition, see Kearton and Lickoridii,[p. 416].

2-handle: t=1

a collar of 1 cylinder
I-handle: t=1/2

a collar of 2 cylinders
1-handle: t=-1/2

a collar of 1 cylinder

0-handle: t=-1

Figure 3: A critical level embedded torus and its banded Bhkc R3

A 2-link with a collared handle decomposition can be nicehbedded ifR*. The left
picture of Fig.3 shows a similar embedding, where the standard 2-tori&’ihas the
collared handle decomposition consisting of 4 handles acull&rs:

1) the lowest handle is a 0-handle (a disk) at the lével—1;
2) the 2 intermediate handles are 1-handles (bands) atvblste= +1/2;

3) the highest handle is a 2-handle (a disk) at the leveH-1.

Definition 2.2 A critical level PL embedding is a PL embedding of a 2-liskcC
R3 x [—1, 1] with a collared handle decomposition satisfying (i)), Gee Kearton and
Lickorish [11, p. 417]:
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(i) the handles are in different sectiol®$ x {tj}, where—1 <t < - <ty <1;

(i) each collar between adjacent handles $®is embedded as the direct product
A x [tj, tir1] € R3 x [tj, tji11], whereA C R? is the attaching area of the handles.

A smooth embeddin@ c R® x [—1, 1] is called a smootisritical level embedding if
the projection pr:S— [—1, 1] has all its critical points in different sectiofis® x {t}.
This is a general position assumption.

Claim 2.3 (i) (Kearton and Lickorish]1, Theorem 1, p. 420])
Any 2-dimensional PL link in 4-space is isotopic to the image critical level PL
embeddings C R® x [-1,1].

(i) Any smooth 2-link is smoothly isotopic to a surfaBec R3 x [—1, 1] such that all
critical points ofpr: S— [—1, 1] are non-degenerate and have distinct values.

We will use the smooth version of Clai@3(ii), which will be deduced from the
transversality theorem of Thom in sectién Claim 2.3(i) is worth keeping in mind
when one associates a banded link to a 2-link in Proposii6).

2.2 Representing 2-links in 4-space by banded links in 3-spa
We define banded links, links with bands, which will reprasztinks in 4-space.

Definition 2.4 A bandedlink is a collection of circles and bands & such that
() the circles and bands are non-oriented and non-sedfsatting;

(ii) the circles and bands are disjoint except for each bauinly a pair of opposite
sidesattachedto disjoint arcs in the circles, the other sides are cdiled

In every band we mark itsore an arc connecting its attached opposite sides, see
Fig. 3. Banded links are considered up to isotopyRf. The bands of a banded link
will represent 1-handles of a 2-link. In every baBdof a banded linkBL consider

the opposite free sides not connected by the corB.oReplaceB by its free sides,

the resulting usual non-oriented link R® is called thepositiveresolutionBL . of the
banded linkBL, see the right picture of Fi@. Similarly define thenegativeresolution

BL_ replacing every ban® by the opposite attached sides connected by the core of
B. A banded linkBL is admissibleif both resolutionBL ;. are trivial links.
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Ifa PL 2-link S ¢ R® x [—1, 1] has all its 1-handles in the zero secti@f x {t = 0},
then the cross-sectiof = SN (R® x {t = 0}) is a banded link. We will use much
weaker assumptions and construct a banded link for anycalritevel embedding.
Propositior2.6leads to a calculus for 2-links in Propositidriand provides a function
from the set of 2-links to the set of admissible banded links.

Definition 2.5 Given a 2-dimensional surfac®, consider the space of all smooth
functionsf: S— R* with the Whitney topology, see Definitidh2 The space CS of
all 2-links S ¢ R* has the induced topology. Points in CS will be classified gitie
projection pr:S— R to the 4th coordinaté. A 2-link Se CS is called

- genericif all critical points of pr are non-degenerate and havemtsivalues;

« anA Al -singularityif Sfails to be generic because of 2 non-degenerate extrema of
pr: S— R that have the same value;

e an A1+A1‘ -singularityif Sfails to be generic because of a non-degenerate saddle and
extremum of pr:S— R that have the same value;

« anA; A; -singularityif Sfails to be generic because of 2 non-degenerate saddles of
pr: S— R that have the same value;

« an Ax-singularity if S fails to be generic because of a singularity of [8:— R
having the form pi,y) = x> — y® in local coordinatex, y.

The sign in the notation above is the sign of the determinagipp, — pr)z(y of the
Jacobi matrix of 2nd order derivatives at a critical poinerbdte by», >, _,>__
and X, the subspace®f the corresponding singularities in the space CS. Intedu
the singular subspace. = ¥, UX,_UX__ U X5. An isotopy of 2-links can be
considered as a path in CS. In Propositthwe consider paths nicely meeting the
singular subspack.

Proposition 2.6 (i) To any a critical level embedding c R3 x [—1, 1] we associate
a banded linklBL well-defined up to the slide/swim moves in Fj.

(ii) If 2-links S, S are isotopic through generic 2-links, then the associatedtiéd
links BL, BL' are related by the slide/swim moves in Fig.

(iii) If2-links S, S are isotopic through generic 2-links and on@gA;, AT A7, AT A -
singularities, themBL, BL' are related by the slide/swim moves in Fig.

(iv) If 2-links S, S are isotopic through generic 2-links and exactly daesingularity,
thenBL,BL’ are related by the cap/cup and slide/swim moves in4€ig.
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Figure 4: Cup/cap moves and slide/swim moves of banded links

Proof (i) The lowest critical point of a generic 2-links with respect to pr 'S —
[-1,1] att = t; is a minimum, so the cross-secti& . is a trivial knot for some
e > 0. The sectionS, . is a prototype of a future banded lifBL, which will
be located in a fixed copy dR3. The key idea in constructingL is to watch the
current cross-sectio = SN (R3 x {t}) simultaneously adding bands and trivial
knots corresponding to new saddles and minima, respectivEhe left column of
Fig. 5 contains cross-section§ for different values oft. The right column shows
successive stages of constructiB whose final form is the top right.

While t is increasing, we isotopically deform the current bandett BL ¢ R3
following § = SN (R3 x {t}), see Fig5. The existing bands dBL can be deformed
to avoid intersections with the rest 8L. For each new minimum d®in R x {tj},
add a trivial knot from§, . to the current banded linBL C R3.

For each new saddle @&, attach a small ban& to BL. The bandB has 2 opposite
sides attached to branches of the previous Bik While t passes the critical value,
the attached sides & are retracted to a point and are replaced by the free sidBs of
The bandB can not meet the attached sides of other bandL.odince these sides are
not included into the current cross-section®f So there are only 2 cases when the
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O O =0 O

t=-1

Figure 5: Cross-sections and a banded link of the spun 2d4rtae trefoil
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new link with bands does not satisfy Definiti@m.

(a) One (or two) of the attached sides®iay meet a free side of another bagdof
BL, see the upper picture of Fi§.. Then slideB along the free side d8’ in any of the
two directions so that in the end the attached sidB dbes not meeB’.

(b) The bandB intersects the interior of another baBtof BL, see the lower picture
of Fig. 6. ThenB swims through any of the attached sidesBbf so B, B’ fall apart.
The bandB can not swim through the free sides Bf as they belong to the current
cross-section ofs. For each new 2-handle (a maximum), we keep the correspgndin
trivial knot of BL, although it disappears fro® = SN (R® x {t}).

After we have passed all critical values of pb:— R, the associated banded link
BL c R3 has been constructed.

LIE
o

Figure 6: A band slides or swims to remove an intersection

(ii) The construction above is not affected by an isotop$&eeping the order of critical
points of pr: S— [—1,1]. Indeed all cross-sectior$g are replaced by isotopic links,
so the resulting banded link is isotopic to the original onevigled that we remove
intersections of bands in Fi§.in the same way.

(iii) The given isotopy ofSis a smooth path passing through onégfA|, AT AT, AT A -
singularities in the space CS of 2-links. A or Af A, an extremum and another
singularity swap their heights, so we add a new trivial kipatsging a minimum) or
keep an existing trivial knot (passing a maximum) that doatsaffect the other sin-
gularity. For anA; A, -singularity, two saddles of swap their heights, so we add
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2 bands toBL in the reverse order. Consider the critical moment when batidles

are in the same sectidR® x {;}. If the associated bands do not intersect each other,
then the new banded link is isotopic to the original one. Jnvg listed the only cases
(a), (b) when one band may intersect another, which led tontves in Fig.6 so the
banded links are equivalent through the slide/swim moves.

(iv) If an isotopy of S passes through af,-singularity, then around this moment a
non-degenerate saddle and extremum appear in a 2-link,|laee £2(iv). In the case
of a minimum, one adds a trivial knot to the current bandekd Bh and a band attached
to the trivial knot and to an existing branch BE. as shown in the cup move of Fig.

In the case of a maximum, one adds a band attached by bothtsiddsranch of the
current banded linlBBL as shown in the cap move of Fig. Recall that we keep the
trivial knot whent passes a maximum. The leftmost and rightmost columns ofdFig.
show projections of 2-links t&3 around singular moments. The 4th axisRt x R
projects to the vertical axis d&3. O

Conversely, any admissible banded link will give rise to #nR-in 4-space, see
Lemma2.8 One can describe all moves of banded links generating atgpg of
2-links in 4-space. Banded links were callatbts with bandén Swenton 14].

2.3 Representing 2-links in 4-space by marked graphs in 3-sgge

Theorem1.4 is easier to prove representing 2-links by marked graphschware
singular links with bridges at singular points.

Definition 2.7 After deformation retracting each band of a banded Brikto a point,
we get asingular link (see Kurlin and Vershinin13]), a collection of closed curves
with finitely many double transversal intersections, seg Ei5. The core of each
retracted band defines a bridge at the singular point, agktrairc in a small plane
neighbourhood of each singular point. We consider the tiaguharkedgraphMG up
to isotopy inR3 keeping a neighbourhood of each singular point in a (movitape.

In the smooth approach, the zero sect®m (R3 x {0}) containing all saddles of
pr: S— [—1,1] is a marked graph whose bridges show how to resolve theilsing
points fort > O (along bridges) ant < 0 (across bridges), see FB.3. An abstract
marked graptMG, i.e. a singular link with bridges, can be converted intordeal link
BL replacing each bridge by a small rectangle whose core d#raacivith the bridge.
Sothereis a 1-1 correspondence between banded links akddmaaphs. Lemma.8
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provides a unique function from the set of admissible baridé&d to the set of 2-links,
which is the inverse of the function from PropositiIb.

Lemma 2.8 Any admissible banded linBL C R? gives rise to a 2-links ¢ R* that
can be represented BL as in Propositior?.§(i).

Proof Take the marked grapMG C R® associated to the given banded link. Isotopi-
cally deformMG in such a way that neighbourhoods of all singular point&/& are
contained in a single hyperplane Bf x {0}.

Resolving the singular points along the bridgestfar 0 and across the bridges for
t < 0, extend the embeddingG c R3 x {0} to a surfaceS C R® x [—¢, £] for some
e > 0, such that the bounda®S consists of trivial links inR3 x {+¢}.

Since both sections,. = S N (R3 x {t = +¢}) are unlinks, one can find isotopies
pi 1 R3 — R3,t € [¢,1—¢], such that eaclpi _(S..) is a collection of small disjoint
circles in a plane. The isotopies™ define the embedding of a 2-lirfkwithout smalll
disks intoR3 x [e — 1,1 — ¢], one disk for each component 6. Attaching a disc
to each boundary circle gives a closed surfsee R x [—1, 1].

The zero sectiorsN (R3 x {0}) is the original marked grapMG. A small isotopy
deformation make$ generic. The construction of Propositi@rg(i) gives a banded
link equivalent toMG as all bands may be chosen small and non-intersecting. O

3 Three-page embeddings of marked graphs

3.1 Any marked graph can be embedded into the 3-page book

Recall that the 3-page book is TBR x T, whereT is the triod consisting of 3 edges
Eo, E1, E> joining the vertexO to the other 3 vertices. The line = R x O is said to
be thebindingaxis, P; = R x E; are called thpagesi = 0,1, 2.

Definition 3.1 An embedding of a marked grajghinto the 3-page book TB is called
a 3-pageembedding, if conditions (i)-(v) hold:

(i) the intersectionG N « of G and the binding axis is a finite set of points;

(ii) the arcs at every point 06 N « lie in 2 pagesP;, P, i # |, see Fig7,
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HBH‘

l@ll
l!l!!

Figure 7: The encoding letters for 3-page embeddings of etbgkaphs

@]

'i!

(iii) all singular points ofG lie in «, a neighbourhood of each singular point lies
in a broken plane consisting of two pages and looks locdtly & crossx ;

(iv) the bridge at each singular point lies in the bindingsaxi
(v) every connected component Gfn P; is projected monotonically te.

The arcs in the pagB, are dashed in Fig/, 8. All classical and singular links can be
embedded into TB in the sense of Definitidr, see Fig8.

The pictures in each vertical column of Figare obtained from each other by rotation
arounda. The rotation corresponds to the shift> i+1 of indices,i € Z3 = {0, 1, 2}.

A 3-page embedding can be encoded by a word in the alphabBgtleftérs describing
the local behaviour o6 near the intersection poinGN«, see Fig7. The 3-page em-
bedding in Fig8is encoded b = agay (bobgby)?doa; di (x101)%c101bg(d1dod2)?C1Co.
So a 3-page embedding of the marked gr&ghof a 2-link Sis a 1-dimensional rep-
resentation o5 C R%.

We give a proof of the embedding result from Kurlin and Vena#i13], because this
construction plays an important role in further considerst.

Proposition 3.2 (Kurlin and Vershinin 13]) Any marked graphG c R3 is isotopic
to a 3-page embedding C TB in the sense of DefinitioB.1
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Figure 8: A 3-page embedding of the marked graph from Fig. 9

Proof Consider a plane diagra® of G ¢ R?® in general position with finitely
many double crossings. At each crossing in the diagtamark a small overcrossing
arc. Recall that, at each singular point @f there is a marked bridge transversally
intersecting both branches &f passing through the singular point.

In the plane containing the diagrain, draw a continuous path such that
(1) the patha passes through each marked arc and bridge exactly once;

(2) « transversally intersects the restdf the endpoints of are away fronD.

Figure 9: How to construct a 3-page embedding of a markedhgrap

Isotopically deform the plane containirig in such a way thatx becomes a straight
line containing all marked arcs and bridges®f Denote the upper half-plane and
lower half-plane ofR? — a by Py and P,, respectively. Notice that a neighbourhood
of each singular point looks like a crosswith a centre in the axis;, see Fig9.
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Attach the third half-pland®; to « and push all marked arcs int®;, see Fig8. If
both (say) upper arcs at some singular peiat G go to points on one side of the point
vV € «, then make an additional couple of crossings in the intéisee: N D like in
Reidemeister move I, see Fifj3. For instance, in the embeddirgh,x, both upper
arcs go to the right, see the lower right picture of Hif, more details are in Kurlin
and Vershinin 13]. Then the intersectioi® N P; is a finite collection of disjoint arcs,
which can be made monotonic with respect to the projection4B, 1 =0,1,2. 0O

3.2 Any isotopy of links can be realised in the hexabasic book

The following lemma is a key stone of the 3—page approach & #reory and was
originally proved by | Dynnikov B, 4].

Lemma 3.3 (Kurlin [12]) Any isotopy of 3-page embeddings of classical links is
decomposed into finitely moves in Fi0 and theirs images under— i + 1, i € Z3.

The algebraic form of the moves in Fij0 is below,i € Z3 = {0, 1,2}, see Kurlin
[12]:

(3-1) dothdy =1, bidi = 1= dib;
(3-2) & = a10di-1, b =a-1C11, G =Dbi_1C1, d =a 161
(3—3) uv = vu, whereu € {abi,dici, bi_ldidi_lbi},v € {a+1, bi+17 Cir1, bidi+1di}

Lemmag3.4is the crucial step in Theorefn3.

Lemma 3.4 The moves in Figl0are realised in the hexabasic badl .

Proof All the moves in Fig.10, apart from the commutativity ddi, b;, ¢, bj_1didij_1

with b, 1d_1di11bj_1, can be realised in the 3-page book TB. For instance, the
relationbyd, = 1 is realised by compressing the slice between the 2 intéwaguoints

and removing the resulting point from. The other relations are realised in HB, see a
geometric realisation ofbgd,dib,)ay = ag(b1d>d;by) in Fig. 11. ]
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i =

d,dd,

(1): relations between invertible generators

VAL VAL VAN N
R
a,d, a, a,c, b,
VAL S VW A
N v
b ¢, ¢ a,c, d,

(i1): relations between generators at intersection points

KOs Ky foxy

b,d,db,

(111): these elements commute with a, bo s Co>s b2 d, d2

Figure 10: Finitely many moves generating any isotopy assitzal links

ANV U N2

b1d2d1b2 a ) bldzdlbz

Figure 11: Realising a commutative relation in the hexablasok HB
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2-links live in a universal 3-polyhedron 1017

3.3 Any 2-link is isotopic to a surface in the universal polyledron

Here we finish the proof of Theorein3.

Proof of Theorem 1.3 By Claim 2.3 any 2-link in 4-space is isotopic to a surface
S c R3x[-1, 1] having all maxima, minima and saddles in different seti® x {t; }
forsome-1<t; <--- <ty <1.InStep 1 we embed each cross-sectprinto the
3-page book. In Step 2 we extend this embedding to a reguighimeurhood ofS; .

In Step 3 we embed the complement of the neighbourhoods iBte IH-1, 1].

Step 1 Chooses > 0 such that the closed-neighbourhoods\.(S,) of §; in Sare
disjoint and each of them contains exactly one critical poinpr : S — [—1, 1],

j =1,...,n. Then the boundarie8N.(S,) are classical links. By Propositiod.2
there is an isotopyf": R® x {tj} — R x {t}, u € [0,1], moving §; into TB,

ie. £0 = idgs, £1(S) € TB x {tj} is a 3-page embedding. Take smooth functions
gi: [t —e,t +¢] — [0, 1] such thatg;(tj)) = 1 andg;(tj £ ¢) = 0. Extendf} to

FURSx [ —efj+e] = R3x [t —e,tj+¢], uel[0,1],
Fioot) = (7990, 1), wherex € R3 te [ — &t + <].

ThenF{' =f fort = andF' = id for t = fj & ¢. HencedN.(S;) are pointwise
fixed and we may combinEju together to form a smooth isotofi}': R3 x [—1,1] —
R3 x [—1, 1] moving eachS; into TB x {t;}. Denote the resulting surface IS).

Step 2 If a singular cross-sectioﬁj has a double intersection, then both positive and
negative resolutions cﬁ{j can be embedded into TB. Indeed the positive and negative
resolutions of the singular poirg are encoded by 1 argla; , respectively, see Fig2.
Given an encoding worg; of S{J C TB, the positive resolution oﬂj is encoded by

w; after removing the lettex; representing the double point 8{{

VST TR T A

c,a,: <0 X, t=0 1: 0

Figure 12: Resolving a singular point in the 3-page book TB
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The argument below with the sigh covers 2 cases when eitheror — is taken in all
formulae. IfS{j contains a maximum or minimun‘\\“}’jﬂ/2 can be embedded into TB.
So there are isotopidsy;: R® x {tj = ¢/2} — R® x {tj +¢/2}, u € [0, 1], moving
eachs{jig/2 into TB x {t; = ¢/2}. Take smooth function§;: [t —¢,tj +¢] — [0, 1]
such thatfj(t)) = 0= Gi(f =) and§j(tj +¢/2) = 1. Extendh; to

HY: R¥x[tj—e,tj+e] = R3x [t —e,tj+e], ue[0,1],
H'(x, 1) = (h“i%"(t)(x)t) for x € R3, t betweertj andt; + ¢.

ThenH = hi; for t = tj /2 andH' = id for t = tj, t = tj = ¢. Hence§ and
BNE(S{J,) are pointwise fixed and we may combng%l together to form a smooth isotopy
HY: R3x[-1,1] — R®x[~1,1] moving eactN, /»(§ ) into TBx [tj —£/2,tj +¢/2].
Denote the resulting surface ISf.

Step 3 The cross-sectiongj’ o2 and gh'/+1—6 Jp are isotopic classical linksj, =
1,...,n—1. By Lemmas3.3and3.4 any isotopy of classical links can be realised in
HB. Then the layers’ N (R3 x [t + /2.1 — £/2]) can be replaced by an isotopy
of links in HB x [t + ¢/2,t11 — €/2]. It remains to extend the embedding to the
neighbourhoods of the lowest minimum and highest maximur8’o$hrinking their
boundaries in HB. So the final surface is embedded intoxH{B-1, 1]. O

4 The universal semigroup of 2-dimensional links

4.1 Local moves of marked graphs generate any isotopy of 2aks

Here we derive a complete set of moves of banded links andaedagkaphs, that
generate any isotopy of 2-links in 4-space. Marked graphdeaepresented by plane
diagrams with small straight arcs denoting bridges ovegudar points, see Fid, 9.

In particular, the cyclic order of edges at each singulaniasiinvariant.

Lemma 4.1 (Kauffman B, Theorem 1, Figure 3 and Figure 9]) Marked graphs are
isotopic inR3 if and only if their plane diagrams can be obtained from eablemby
finitely many Reidemeister moves in Fit3, where all symmetric images of the moves
should be considered.

The moves in Figl3 arelocal in the sense, that a small disk in the left part of each
move is replaced by another small disk in the right part ofrttoze, while the rest of
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N <N \/\N -\—\—
e X IOK X,

Figure 13: Reidemeister moves for rigid isotopy of markespiis

the diagram remains unchanged. The singular points in movasd V of Fig.13can
be equipped with arbitrary corresponding bridges. Thefusoa direct application of
the transversality theorem of Thom similarly to a proof cé RReidemeister theorem
for plane diagrams of classical links, see analogous agimits of singularity theory
to links and graphs in Fiedler and KurliB,[section 2], 6, section 2].

Proposition 4.1 Marked graphs represent isotopic 2-links in 4-space if amg i
they can be obtained from each other by finitely many movesgnid

| |
S e

Figure 14: Moves of marked graphs generating isotopy ohRsli

Symmetric images of the moves in Fig/4 are skipped as they can be reduced to
the standard moves using an isotopy®i. Proposition4.1 was conjectured by
K Yoshikawa in [L5]. F Swenton 14] claimed a proof of Propositiod.1 using
banded links and the equivalent moves in FigM Saito wrote in his review for the
MathSciNet: ‘It is claimed that this set of moves is equival® Yoshikawa’s moves.
It might be beneficial of some more detailed accounts, fompte, those for the above
claim, are discussed further and presented elsewhere ilitdhagture’. The authors
were asked by S Carter to fill in these details, so we give a rdetailed proof of
Proposition4.1 for banded links. Recall that the singular subspacef the space
CS of 2-links was introduced in Definitiad5. The following result will be formally
deduced irb using the transversality theorem of Thom.

Algebraic & GeometricZopology XX (20XX)
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Claim 4.2 (i) The closure of the subspa&e has codimension 1 in the spaCs.
(i) The complement of the closui® in CS consists of generic 2-links.

(iif) Any isotopy of 2-links can be deformed in such a way th#dintermediate 2-links
are generic apart from finitely many singularities of Defomit2.5.

(iv) If an isotopy passes through &g -singularity, then a non-degenerate saddle and
extremum collide and disappear as shown in the top pictuFégofl8.

Claims4.2(i,ii) say that any point of CS can be removed frairby a small perturbation,
i.e. a 2-link can be made generic, which implies Clar&ii). Claim 4.2(iii) says that
the singularities of Definitior2.5 are the only singularities occuring in any isotopy of
2-links in general position.

Proof of Proposition 4.1 By Claim 4.2iii) any isotopy of 2-links can be deformed
into a smooth path transversal to the subspace- CS. When the path passes
through one of the singularities, the associated banddddiranges according to
Proposition2.4(iii),(iv), which led to the moves in Fig4 as required. O

4.2 A 1-dimensional encoding 2-links up to isotopy in 4-spa&c

Here we reduce the isotopy classification of 2-links in 4egpé a word problem in
the finitely presented semigroup SL, the universal semgaii2-links. Recall that
moves (—1)-(1-8) on 3-page embeddings were defined in subsedtianTheoren.4
follows from the following generalisation of Lemn®3to singular links.

Proposition 4.3 (Kurlin and Vershinin L3]) Consider the semigrouSK generated
by g, b, ci,d, %, i € Zs, subject to relationsl-1)-(1-5 from subsectiorl.3 Then

any singular linkG c R® is encoded by an elememis € SK in such a way that
singular linksG, G’ are isotopic if and only if the elememtss andwg are equal in
SK. An elementw € SK encodes a singular link if and onlyw is central inSK.

Proof of Theorem 1.4 Any 2-link can be represented by its marked gr&tvhose 3-
page embedding is encoded by a word in the letels, ¢, d, X, i € Z3, as described
before PropositioB.2. All encoding elements form the centre of SL as the sametresul
holds for the universal semigroup SK of singular links, ieations (—1)-(1-5 imply

that any encoding element commutes with the generators.
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The remaining part of Theorem thm:semigroup states thaBBiwage embeddings of
marked graphs represent isotopic 2-links in 4-space if ahdibthey can be related by
algebraic movesl-1)-(1-8) in subsectiorl.3. By Lemmas3.3 3.4and Propositiod. 1

it suffices to realise moves VI, VII, VIl in Figl4 by 3-page embeddings.

In moves VI, VII, VIl a small disk in the left part is replacdayy another small disk
in the right part. Similarly to the construction of a 3-pagebedding, choose a path
« passing through overcrossing arcs and bridges at singalatsp see Figl5, 16,
17. Deform the diagrams in such a way thatbecomes a straight line and push all
overcrossing arcs into the half-plaRe, all bridges remain inv.

Figure 15: Realising moves VI of Fid4in terms of 3-page embeddings

In Fig. 15moves VI are encoded B1x; = a; andaibix;di¢; = 1 equivalent to1-6)
for i = 1. We made additional intersections @fwith the diagram to decompose the
resulting embedding into local 3-page embeddings from Fig.

In Fig. 16 move VIl is encoded byl x;b1c1x1 = byxdicixg, whichis —7) for i = 1.
Numbers 1, 2, 3, 4, 5, 6 denote arcs going out of the small éislaced by move VI,
e.g. the pathx starts between arcs 1, 4 and ends between arcs 3, 6.

In Fig. 17 move VIl is encoded by
(a1b1x1b1¢1)d2d; (bo0p)di doazboxg by daby (D2dp)bybad? =
(azb1x1b1c1)bgby (b202)as boayds (b2d2)d1Cobixg by,

which is equivalent toX-8) for i = 1 after removindo,d, = 1 by relation (—1). The
relations for otheli € Z3 were added to make the presentation symmetric. O
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Figure 17: Realising move VIII of Figl4 in terms of 3-page embeddings
5 Appendix: the multi-jet transversality theorem of Thom

Here we follow Arnold, Varchenko and Gusein-Zadgdections 1.2, 1.8].

Let £&,m: M — N be smooth maps between finite dimensional manifolds with Rie
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mannian metricsw, pn, respectively.

Definition 5.1 The mapst andn have the tangency afrder k at a pointz € M if k
is the maximal integer such thak (£(w), n(w))/(om(z, w))¥ — 0 asw € M tends to
z, e.g. the curve(w) = wkt! has the tangency of ord&with 7(w) = 0.

The |-tuple k-jet of the map¢ at (z, ... ,z) € M' is the equivalence class of smooth
mapsn: M — N up to tangency of ordek at the pointsz,...,z € M, e.g. the
1-tuple 1-jetj[11]§(z) ofamap¢: R — R is determined by, £(2), £(2).

Denote byJﬁ] (M, N) the space of all-tuple k-jets of smooth mapg: M — N for
all (z1,...,2) € M. Let (Xq,...,%n) and @1, ..., Yn) be local coordinates iM and
N, respectively. If¢ is defined locally byy; = &(X1,...,%m), ] = 1,...,n, then the
[-tuple k-jet of ¢ at (z1, ..., 7) is determined by arrays of the data below

&Sj} { o } -
X1y Xmbs R VA =5, .. =—=—>3 i1+ ---+is=k
R R VST ) IR SHEE

The quantities above define local coordinateéﬁ]r(M, N). Thel-tuple k-jet jﬁ]f ofa
smooth mag: M — N can be considered as the mjgigt: M' — J,(M, N), namely
(z1,...,2) goes to thd-tuple k-jet of ¢ at (z, ..., 7).

The manifoldJ, (M, N) is finite dimensional, e.gJ};(M,N) = (M x N)',

m(m + 1)n

dimJf;(M,N) = (m-+n+ mn)l, dimJj(M,N) = (m+ n+mn+ 5

).
Definition 5.2 Take an open s&/ C J[kl](M, N). The set of smooth mags M — N
with |-tuple k-jets from W is open These sets for all opeW C Jﬁ](M7 N) over all
k,I form a basis of th&Vhitneytopology in C>(M, N). The space CS of all 2-links
S c R* inherits theWhitneytopology fromC>(S, R%).

So maps are close in the Whitney topology if they are closk alltderivatives.

Definition 5.3 Let M be a finite dimensional smooth manifold. A subspace M
is calleda stratified spacé A is the union of disjoint smooth submanifolds (strata)
such that the boundary of each stratum is a finite union ofsstrhless dimensions.
Let N be a finite dimensional manifold. A smooth map M — N is transversalto
a smooth submanifold) C N if the spaces,(T,M) and T¢»U generateT¢ ;N for
eachz € M. A smooth map is) : M — V transversalo a stratified spacd C V if
the the map, is transversal to each stratum bf
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Briefly Theoremb.4 says that any map can be approximated by ‘a nice map’.

Theorem 5.4 (Multi-jet transversalittheorem of Thom, see Arnold, Varchenko and
Gusein-Zadel], section 1.2])

LetM,N be compact smooth manifold&, C J[kl](M, N) be a stratified space. Given a
smooth magg: M — N, there is a smooth map. M — N such that

 the mapn is arbitrarily close tc& with respect to the Whitney topology;

« thel-tuplek-jet j j[l]n M — J[,](M N) is transversal ta\ C J[,](M,N).

Proof of Claim 4.2 . (i) For any critical point of pr:S — R, fix local coordi-
nates X,y) € S such that the derivatives pr= pr, = 0. The closures of the sub-
spaces, , UY,_ UX__ andX; from Def|n|t|0n2 5can be mapped onto the sub-
spaces of the finite-dimensional spad%;s(& R) andJ[l] (S R) given by the equations
pr(x1, y1) = pr(xz, y2) and pg,pr,, — prg, = O, respectively. The resulting subspaces
of jets have codimension 1 as preimages of 0 under smoothidasce.g. the image
of ¥ in Ji)(SR) is (prpry, — pra,)1(0). Hence the closures, ; UX, UX__
and X, have codimension 1 in the space CS of 2-links.

(ii) Ifa 2-link is not generic, then either some critical pts of the projection prS— R
are degenerate or have the same value. The singularitiesfiifibn 2.5 are all multi
local codimension 1 singularities of smooth functids— R, see Arnold, VVarchenko
and Gusein-Zad€l].

(iii) By Theorem5.4 any smooth isotopy of 2-links is a path in CS and can be made
transversal to the singular subspacewhich has codimension 1 by (i), hence the new
path will contain only finitely many isolated singularities Definition 2.5.

(iv) The normal form of am;-singularity of a functionR? — R is pr(x, y) = X% — y°,

i.e. the projection pr:S — R has the form above in suitable local coordinates
(x,y) € S. A2-link S, its cross-sections around the singularity and the grapy® of
look like the middle pictures of Fid.8. The versal deformation of afy, -singularity is
prx,y; €) = x> —y> + ey, see Arnold, Varchenko and Gusein-Zafig .e. any smooth
deformation of pr{,y) can be expressed d&gx,y; ¢) - pr(fa(x,y; €), fa(X, y; €); fa(€)),
where f1, fo, f3,f4 are smooth,f;(0,0;0) # 0, fo(x,y;0) = x, f3(x,y;0) = y and
f4(0) =

Fore < 0, a2-linkS, its cross-sections around the singularity and the grapf efcy
look like the left pictures of Figl8. Fore > 0, a 2-link S, its cross-sections around
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e>0

X X Ax/
y y Y

2=y3gy 2=y x2=yigy
3 3
-&
T , ~/
y y / |\/ y

Figure 18: Transformation of a 2-link near &a-singularity

the singularity and the graph of — ey look like the right pictures of Figl8. For
instance, 2-links foe > 0 have a non-degenerate saddleat 0,y = \/¢/3 and a
local extremum ak =0,y = —/¢/3. O
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