Topological analysis of zeolite-like compounds with mixed frameworks and crystal structure prediction using the approach of OD (“order-disorder”) theory

Sergey M. Aksenov1* and Stefano Merlino2

1Kola Science Centre RAS, Apatity, Russia
2Accademia Nazionale dei Lincei, Rome, Italy

*aks.crys@gmail.com

Compounds with the general formula Cs\(^{[6]}\)Al\(^{[4]}\)\(\{\text{TP}_6\text{O}_{20}\}\) (where \(T = \text{B}, \text{Al}\) [2]) are considered as polytypes. The crystal structures of compounds with the general formula Cs\(^{[6]}\)Al\(^{[4]}\)\(\{\text{TP}_6\text{O}_{20}\}\) were determined by means of natural tilings (the smallest polyhedral cationic clusters that form a framework) of the 3D cation nets [9] calculated using the ToposPro software [10].

The symmetrical relations between the compounds have been analyzed using the OD theoretical approach [3,5,6] for the OD families containing more than one \((M > 1)\) kinds of layers [7]. The OD layers have been chosen in accordance with the equivalent region (ER) requirements [8]. Topological analysis of the frameworks was performed by means of natural tilings (the smallest polyhedral cationic clusters that form a framework) of the 3D cation nets [9] calculated using the ToposPro software [10].

The crystal structures of compounds with the general formula Cs\(^{[6]}\)Al\(^{[4]}\)\(\{\text{TP}_6\text{O}_{20}\}\) (where \(T = \text{Al, B}\)) display order-disorder (OD) character and can be described using the same OD groupoid family [11]. Their structures built up by two kinds of non-polar layers, with the layer symmetries \(Pc(n)2\) (\(L_{2n+1}\)-type) and \(Pc(a)m\) (\(L_{2n}\)-type) (category IV [7]). Layers of both types \((L_{2n} \text{ and } L_{2n+1})\) alternate along the \(b\) direction and have common translation vectors \(a\) and \(c\) \((a \sim 10.0\ \text{Å}, \ c \sim 12.0\ \text{Å})\). All ordered polytypes as well as disordered structures can be obtained using the following partial symmetry operators that may be active in the \(L_{2n}\) type layer: the \(2_1\) screw axis parallel to \(c\) \([\sim \sim 2_1]\) or inversion centers and the \(2_1\) screw axis parallel to \(a\) \([2_1 \sim \sim]\). The symmetry relation common to all polytypes of this family are described by the OD groupoid family symbol:

\[
Pc(n)2 \quad \begin{array}{cc}
2_1/c (2/a) & 2_1/m \\
r, 0
\end{array}
\]

(1)

where \(r = 0\); the first line contains the layer-group symbols of the two constituting layers, while the second line indicates positional relations between the adjacent layers [12].

Different sequences of operators active in the \(L_{2n}\) type layer \((\sim \sim - \sim 2_1)\) screw axes or inversion centers and \([2_1 \sim \sim \sim]\) screw axes) define the formation of multilayered structures with the increased \(b\) parameter, which are considered as non-MDO polytypes.

Compounds with the general formula Rb\(^{[6]}\)\(M^{2+}\)[\(^{[4]}\)\(\text{TP}_6\text{O}_{20}\)] \((M = \text{Al, Ga}; \ T = \text{Al, B})\) are based on heteropolyhedral \(MT\)-frameworks with the same stoichiometry as in Cs\(^{[6]}\)Al\(^{[4]}\)\(\{\text{TP}_6\text{O}_{20}\}\) (where \(T = \text{Al, B}\)). It was found that all the frameworks have common natural tilings, which indicates the close relationships of the two families of compounds.

This research was funded by the Russian Science Foundation (Project No. 20-77-10065)

References:

